58. Synthesis of Cyclic Depsipeptides and Peptides via Direct Amide Cyclization

by José M. Villalgordo $\left.{ }^{1}\right)^{2}$) and Heinz Heimgartner *
Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

Dedicated to Professor Dr. Hans-Jürgen Hansen on the occasion of his 60th birthday

Abstract

The 2,2-disubstituted 2 H -azirin-3-amines 7 (2,2-disubstituted 3 -amino- 2 H -azirines) were used as amino-acid synthons in the preparation of medium-sized cyclic depsipeptides and peptides derived from salicylic acids 6 and anthranilic acid 19, respectively (Schemes $2-4$ and 5 , resp.). The combination of the 'azirine/oxazolone method' for the synthesis of linear peptides containing α, α-disubstituted α-amino acids and the acid-catalyzed amide cyclization in DMF at 60° proved to be an excellent preparative route to ten-membered cyclic depsipeptides and peptides. In the case of the anthranilic-acid derivative, a transannular ring-closure reaction was observed $(\mathbf{2 4} \boldsymbol{\rightarrow} \mathbf{2 5}$). Larger rings proved to be extremely sensitive to hydrolysis.

1. Introduction. - As already shown, 2,2-disubstituted 2 H -azirin-3-amines (3-amino2 H -azirines) are useful synthons in peptide chemistry [1-7] as well as in heterocyclic chemistry [2] [8-12]. The so-called 'azirine/oxazolone method' [13] has been shown to be particularly useful in the synthesis of peptaibols (cf. [3] [7] [14]) and in the synthesis of conformationally restricted cyclic peptides [4] (cf. [2]). A further application is the synthesis of cylic depsipeptides by the so-called 'direct amide cyclization' [15]. The concept of the latter is shown in Scheme 1: Condensation of a carboxylic acid, bearing a nucleophilic group, with a 2 H -azirine-3-amine 1 , leads to the corresponding diamide of type 2 that, on treatment with dry HCl , affords the corresponding 1,3-oxazol- $5(4 H)$-one 3 . Under the acidic conditions, this intermediate can be attacked by a nucleophile leading to 4 via ring opening. In the absence of an external nucleophile, suitable substrates are able to undergo an intramolecular nucleophilic attack yielding the ring-enlarged products of type 5 .

So far, ten-membered cyclodepsipeptides and cyclotripeptides containing a β-hydroxy or β-amino acid have received little attention [16-18]. The synthesis of this class of compounds has been achieved either by the incorporation of a β-hydroxy- or β-aminoacid residue into piperidin-2-ones via ring enlargement [19] [20] (cf. also [21]) or by cyclization of the linear precursor via the 'active-ester method' [22-24]. Recently, the preparation of ten-membered cyclotripeptides has also been reported by Rothe and coworkers [25].

[^0]Scheme 1

Based on these precedents, it was of interest to apply a combination of the 'azirine/ oxazolone method' and the 'direct amide cyclization' procedure in order to obtain medium-sized cyclodepsipeptides and peptides, and to find suitable conditions for an efficient cyclization.
2. Results and Discussion. - The first β-hydroxy acids selected were salicylic acids 6 ($\mathrm{X}=\mathrm{H}, \mathrm{NO}_{2} ;$ Scheme 2). The reaction with N -methyl- N -phenyl- 2 H -azirin-3-amines 7 in dry MeCN at 0° led to diamides 8 , isolated in very high yield after a simple filtration of the resulting solid. Hydrolysis under standard conditions with 3 N HCl in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ at room temperature gave the corresponding carboxylic acids 9 in nearly quantitative yield. These acids were further condensed with a second 2 H -azirin-3-amine 7 under the same conditions, yielding the corresponding salicyloyl-dipeptides of type $10(80-85 \%$ overall yield; Table 1).

Table 1. Prepared Salicyloyl-peptides 8 and 10

	$\mathrm{R}^{1}, \mathrm{R}^{\mathbf{2}}$	$\mathrm{R}^{\mathbf{3}}, \mathrm{R}^{4}$	X	Yield [\%]
$\mathbf{8 a}$		Me, Me	-	H 99
\mathbf{b}	$-\left(\mathrm{CH}_{2}\right)_{4}-$	-	H	94
\mathbf{c}	Me, Me	-	NO_{2}	89
$\mathbf{1 0 a}$	Me, Me	Me, Me	H	91
b	Me, Me	$-\left(\mathrm{CH}_{2}\right)_{4}-$	H	90
c	$-\left(\mathrm{CH}_{2}\right)_{4}-$	$-\left(\mathrm{CH}_{2}\right)_{4}-$	H	98
\mathbf{d}	$-\left(\mathrm{CH}_{2}\right)_{4}-$	Me, Me	NO_{2}	98
\mathbf{e}	Me, Me	Me, Me	87	

Scheme 2

Treatment of solutions of $\mathbf{1 0}$ in dry DMF with dry HCl gas at 60° for $10-30 \mathrm{~min}$ and stirring for another hour under N_{2} gave the corresponding 1,4,7-benzoxadiazecine-2,5,8triones 11 in high yields (Scheme 3, Table 2). These compounds were isolated as colorless powders (except for $\mathbf{1 1 e}$, which was slightly yellow) after simple chromatographic workup and generally showed a strong tendency to be hydrolyzed to the corresponding open-chain carboxylic acids. Most likely, the formation of 11 occurred via the corresponding oxazol- $5(4 H)$-ones $\mathbf{1 2}$ as reactive intermediates, followed by an intramolecular nucleophilic attack of the aromatic OH group onto $\mathrm{C}(5)$ of the oxazolone ring (Scheme 3).

Table 2. Prepared Cyclic Depsipeptides of Type 11

	R^{1}		R^{2}	R^{3}	R^{4}	X	Yield [\%]
$\mathbf{1 1 a}$			Me	Me		Me	Me
b	Me		Me		$-\left(\mathrm{CH}_{2}\right)_{4}-$		H
\mathbf{c}		$-\left(\mathrm{CH}_{2}\right)_{4}-$			$-\left(\mathrm{CH}_{2}\right)_{4}-$		H 92
\mathbf{d}		$-\left(\mathrm{CH}_{2}\right)_{4}-$		Me	Me	Me	
e	Me		Me	H	96		

It is worth mentioning that no $\mathrm{C}=\mathrm{O}$ absorption for the lactone group could be observed in the IR spectra (KBr) of compounds $\mathbf{1 1 a - e}$. In addition to the strong bands at $c a .1630$ and $1605 \mathrm{~cm}^{-1}$ for the lactam groups, a strong and broad band appeared at $3400 \mathrm{~cm}^{-1}$, indicating the presence of NH and/or OH groups. On the other hand, three $\mathrm{C}=\mathrm{O}$ signals were present in the ${ }^{13} \mathrm{C}$-NMR spectra $\left(\mathrm{CDCl}_{3} ; c a .183,176\right.$, and 169 ppm$)$, and the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra $\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$ showed two signals for NH . The two $\mathrm{Me}_{2} \mathrm{C}$ groups of 11 a appeared in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum as two s at 1.46 and 1.40 ppm and in

Scheme 3

$X=H, \mathrm{NO}_{2}$

13

11
the ${ }^{13} \mathrm{C}$-NMR spectrum as two s for $\mathrm{Me}_{2} C(58.6$ and 58.3 ppm$)$ and two q for $M e_{2} \mathrm{C}(25.6$ and 25.1 ppm). Similarly, the geminal Me groups in $11 \mathrm{~b}, 11 \mathrm{~d}$, and 11 e as well as the 'geminal methylene groups' of the cyclopentyl derivatives $\mathbf{1 1 b}$ - \mathbf{d} were equivalent in the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra. This reflects a high flexibility of the heterocyclic system in solution. The absence of a lactone $\mathrm{C}=\mathrm{O}$ absorption in the solid state can be explained by a reversible transannular ring contraction of compounds $\mathbf{1 1}$ to give the 'oxacyclols' of type $\mathbf{1 3}$ (Scheme 3). The latter are possibly more stable in the solid state than the more flexible medium-sized heterocycles 11. Analogous transannular ring contractions have been observed previously (cf. e.g. [16] [26-28] and refs. cited therein). In the ten-membered rings of type 11, this ring contraction could be favored due to the enhanced electrophilic character of the phenolic lactone group as well as by the flattening effect of the fused benzene ring.

As we were unsuccessful at growing crystals of 11 a-e suitable for an X-ray crystalstructure determination which would prove the proposed structures, an additional compound of the same type was synthesized (Scheme 4). The coupling of 6 a with the glycine benzyl ester derivative 14 in MeCN was performed by using the $\mathrm{H}_{2} \mathrm{O}$-soluble carbodiimide CME-CDI (N-cyclohexyl- N^{\prime}-[2-(4-methylmorpholin-4-ylium)ethyl]carbodiimide toluene-4-sulfonate) and $\mathrm{Et}_{3} \mathrm{~N}$, which led to the hydroxy-dipeptide benzyl ester 15 in 72% yield. Deprotection of the carboxy group by hydrogenolysis in MeOH ($10 \% \mathrm{Pd} / \mathrm{C}$) gave 16 in 92% yield. Reaction with azirine $\mathbf{7 a}$ in MeCN yielded the tripeptide $\mathbf{1 7}$ (92%), which then was cyclized under the conditions already described. The cyclic depsipeptide 18 was isolated in 95% yield. All attempts to crystallize 18 did not produce crystals of suitable quality for an X-ray analysis.

In an analogous way, Z-protected anthranilic acid 19 was reacted with azirine 7 a to give diamide 20, which, upon hydrolysis under standard conditions (3 N HCl in THF/ $\mathrm{H}_{2} \mathrm{O} 1: 1$), gave the corresponding carboxylic acid 21 (Scheme 5). The latter was coupled

Scheme 4

Scheme 5

with another unit of $\mathbf{7 a}$ to give the protected tripeptide 22. Deprotection of the amino group by hydrogenolysis (Pd / C in MeOH) led to compound 23 that was cyclized on treatment with HCl gas in DMF at 60° yielding the heterobicyclic compound $\mathbf{2 5}$ (Scheme 5). The formation of $\mathbf{2 5}$ can be rationalized by a transannular ring closure of the initially formed 24 followed by elimination of $\mathrm{H}_{2} \mathrm{O}$. It is worth mentioning that the analogous cyclic peptide cyclo(- N-methylanthraniloyl-L-phenylalanyl-L-prolyl-), whose structure has been established by X-ray crystallography, is stable as the ten-membered ring [29].

Compound 25 was isolated as a colorless solid, and its structure was deduced on the basis of the IR and mass spectra. An interesting effect was observed while recording the ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{2 5}$. Because of the partial insolubility in DMSO, the suspension was heated to $65-75^{\circ}$; at this temperature, a slightly cloudy solution was still present, but it was possible to record the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum. The latter indicated the presence of a $1: 2$ mixture of $\mathbf{2 4}$ and $\mathbf{2 5}$. Obviously, $\mathbf{2 4}$ resulted from the addition of $\mathrm{H}_{2} \mathrm{O}$ to 25 . Further heating to 100° led to a clear solution and to complete hydration of 25 . Under these conditions, the spectrum of $\mathbf{2 4}$ was obtained exclusively. The structure of $\mathbf{2 5}$ was established by X-ray crystallography (Fig. 1).

Fig. 1. ORTEP Plot [30] of the molecular structure of 25 (with 50% probability ellipsoids)

Another hydroxy acid selected for synthesizing cyclodepsipeptides was 3-hydroxybenzoic acid (26). Its reaction with azirinamine 7 a yielded the diamide 27 , which was selectively transformed to the carboxylic acid $\mathbf{2 8}$ and further condensed with $\mathbf{7 a}$ to give the hydroxy-tripeptide 29 (Scheme 6). All attempts to cyclize 29 under acidic conditions to the eleven-membered ring $\mathbf{3 0}$ failed. Only the corresponding carboxylic acid $\mathbf{3 1}$ was isolated.

Condensation of $\mathbf{3 1}$ with a third azirinamine unit $\mathbf{7 a}$ yielded tetrapeptide $\mathbf{3 2}$ that we tried to cyclize under standard conditions (DMF/HCl at 60°). However, after workup, the carboxylic acid 34 was obtained in 87% yield instead of the cyclic depsipetide 33 . The structure of 34 was deduced from its spectroscopic data. As suitable crystals were

Scheme 6

26
$7 a$

$\downarrow+7 a$

obtained from MeOH by slow evaporation of the solvent, the structure was confirmed by X-ray crystallography (Fig. 2).

Based on the present results, two possible pathways for the formation of the carboxylic acids 31 and 34 instead of the expected cyclic depsipeptides 30 and 33 , respectively, can be proposed. In analogy to many other reactions studied, the primary formation of a terminal 1,3-oxazol-5(4H)-one intermediate of type 35 from 29 and 32 is most likely. In the case of $35(n=1)$, the intramolecular nucleophilic attack of the phenolic OH group onto the oxazolone $\mathrm{C}=\mathrm{O}$ group is difficult for steric reasons. Therefore, a hydrolytic ring opening of $35(n=1)$ either by small amounts of $\mathrm{H}_{2} \mathrm{O}$ present in the reaction mixture or during workup yields 31 . An analogous formation of 34 from $35(n=2)$ is also possible, but in this case, the cyclodepsipetide 33 is possibly formed first. During workup, the

Fig. 2. ORTEP Plot [30] of the molecular structure of $\mathbf{3 4}$ (with 50% probability ellipsoids)
latter can be hydrolyzed to give 34 , as the phenolic lactone group of the strained, medium-sized ring 33 is labile towards hydrolysis.

Finally, tetrapeptide amides 38 and 39 were prepared from 10a, c and 22, respectively, via selective hydrolysis of the terminal amide group and coupling of the peptide acids 36a, b and 37 with another azirinamine unit 7 (Scheme 7). Unfortunately, all attempts to cyclize these tetrapeptide derivatives by using the conditions already described $(\mathrm{HCl}$ in DMS at 60°) did not yield the expected cyclic products of type 41, but the open-chain tetrapeptide acids 40 in the case of $\mathbf{3 8}$, and an intractable mixture of compounds in the case of $\mathbf{3 9} \mathbf{~ b}$.

In conclusion, we have shown that the combination of the 'azirine/oxazolone method' with the 'direct amide cyclization' proved to be a reasonable preparative route to ten-membered cyclic depsipeptides and peptides containing α, α-disubstituted α-amino acids. Unfortunately, the analogous synthesis of corresponding 13- and 14-membered cyclic depsipeptides has so far been unsuccessful. However, as compounds of type $\mathbf{4 1}$ are of interest as analogues of the so-called 'cycloaspeptides', recently isolated from the fungus Aspergillus sp NE-45 [31], further studies toward the synthesis of such cyclic peptide analogues using the strategy described above, are in progress.

[^1]Scheme 7

10a $X=O, R^{1}=R^{2}=M e$
c $X=O, R^{1}-R^{2}=-\left(\mathrm{CH}_{2}\right)_{4^{-}}$
$22 X=Z N, R^{1}=R^{2}=M e$
$\xrightarrow[\text { THF/ } \mathrm{H}_{2} \mathrm{O}]{3 \mathrm{~N} \mathrm{HCl}}$

36a $X=O, R^{1}=R^{2}=M e$
b $X=O, R^{1}-R^{2}=-\left(\mathrm{CH}_{2}\right)_{4}$
$37 \mathrm{X}=\mathrm{ZN}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}$

40a $R^{1}=R^{2}=\mathrm{Me}$
b $R^{1}-R^{2}=-\left(\mathrm{CH}_{2}\right)_{4}$ -

38a $X=O, R^{1}=R^{2}=\mathrm{Me}$
b $X=O, R^{1}-R^{2}=-\left(\mathrm{CH}_{2}\right)_{4}{ }^{-}$
$\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$
39a $X=Z N, R^{1}=R^{2}=M e$
b $X=N H, R^{1}=R^{2}=M e$

41

Experimental Part

General. See [8]. Unless otherwise stated, IR spectra in KBr and NMR spectra in (D_{6}) DMSO (${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(50.4 \mathrm{MHz})$). EI-MS at 70 eV , CI-MS with 2-methylpropane or NH_{3}.

1. Reaction of $\mathrm{N}-$ Methyl- N -phenyl-2H-azirin-3-amines 7 with Salicylic Acids 6. 1.1. 2-(2-Hydroxybenzamido)$2, \mathrm{~N}$-dimethyl- N -pheny/propanamide (8a). To a well stirred soln. of salicylic acid (2-hydroxybenzoic acid; $6 \mathrm{a} ; 1 \mathrm{~g}$, 7.24 mmol) in dry MeCN (15 ml), a soln. of $N, 2,2$-trimethyl- N-phenyl- $2 H$-azirin- 3 -amine ($\mathbf{7 a ; 1 . 2 5 \mathrm { g } , 7 . 2 4 \mathrm { mmol } \text {) }) ~ (2)}$ in $\mathrm{MeCN}(6 \mathrm{ml})$ was added at 0°. The mixture was stirred at r.t. overnight under N_{2}. Then, the precipitated solid was collected by filtration, washed with cold hexane/Et ${ }_{2} \mathrm{O}$, and dried under h.v.: $2.23 \mathrm{~g}(99 \%)$ of 8 a . Colorless powder. M.p. $198.4-199.2^{\circ}$. IR: $3340 \mathrm{~s}, 3060 \mathrm{w}, 2980 \mathrm{w}, 2920 \mathrm{w}, 1640 \mathrm{~s}, 1630 \mathrm{~s}, 1625 \mathrm{~s}, 1595 \mathrm{~s}, 1550 \mathrm{~s}, 1540 \mathrm{~s}, 1495 \mathrm{~s}$, $1470 w, 1460 \mathrm{w}, 1450 \mathrm{~m}, 1400 \mathrm{~s}, 1380 \mathrm{~s}, 1370 \mathrm{~s}, 1335 \mathrm{~m}, 1305 \mathrm{~m}, 1260 \mathrm{~s}, 1230 \mathrm{~s}, 1205 \mathrm{~m}, 1170 \mathrm{~m}, 1140 \mathrm{~m}, 1110 \mathrm{w}, 1080 \mathrm{~m}$, $1040 \mathrm{~m}, 1025 \mathrm{w}, 1005 \mathrm{w}, 830 \mathrm{~m}, 775 \mathrm{~m}, 755 \mathrm{~s}, 715 \mathrm{~s}, 675 \mathrm{~m}, 620 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 8.28$ (br. s, NH); $7.62(d, J=7.2,1$ arom. $\mathrm{H}) ; 7.35-7.3$ ($m, 1$ arom. H); 7.14 (br. $s, 5$ arom. H); 6.85-6.75 ($m, 2$ arom. H); $3.15(s, \mathrm{MeN}) ; 1.50\left(s, \mathrm{Me}_{2} \mathrm{C}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: 172.0,168.0(2 s, 2 \mathrm{C}=\mathrm{O})$; $159.4,145.0(2 \mathrm{~s}, 2$ arom. C); 133.7, 129.0, 128.7, 127.2, 126.9, 118.5, 117.1 ($7 d, 9$ arom. CH); 115.9 ($s, 1$ arom. C); $57.2\left(s, \mathrm{Me}_{2} C\right) ; 40.1(q, \mathrm{MeN}) ; 26.8\left(q, M e_{2} \mathrm{C}\right) . \mathrm{CI}-\mathrm{MS}: 313$ $\left(29,[M+1]^{+}\right), 248(5), 207(12), 206(100), 108(5), 107(9)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}(312.36):$ C 69.21, H 6.45, N 8.96; found: C 69.29, H 6.72, N 9.21 .
1.2. 1-(2-Hydroxybenzamido)- N -methyl- N -phenylcyclopentanecarboxamide (8b). Analogously to $1.1,6 \mathrm{a}(1 \mathrm{~g}$, 7.24 mmol) was reacted with N-methyl- N-phenyl-1-azaspiro[2.4]hept-1-en-2-amine (7b; $1.45 \mathrm{~g}, 7.24 \mathrm{mmol}$): 2.30 g
(94%) of 8 b . Colorless powder. M.p. $198.5-199.5^{\circ}$. IR: $3320 \mathrm{~s}, 3060 \mathrm{w}, 2960 \mathrm{~m}, 2930 \mathrm{~m}, 1645 \mathrm{~s}, 1630 \mathrm{~s}, 1590 \mathrm{~s}, 1545 \mathrm{~s}$, $1540 s, 1495 \mathrm{~s}, 1480 \mathrm{~m}, 1445 \mathrm{~m}, 1380 \mathrm{~s}, 1345 \mathrm{~m}, 1310 \mathrm{~s}, 1260 \mathrm{~m}, 1240 \mathrm{~m}, 1170 \mathrm{w}, 1145 \mathrm{~m}, 1135 \mathrm{w}, 1090 \mathrm{~m}, 1070 \mathrm{w}, 1040 \mathrm{w}$, $1025 w, 835 m, 760 s, 710 s, 620 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 12.22(s, \mathrm{OH}) ; 7.4-7.3(m, 1$ arom. H$) ; 7.15-7.05$ ($m, 5$ arom. H); 6.94 ($d, J=8.3,1$ arom. H); $6.7-6.55$ ($m, 2$ arom. H); 5.48 (br. s, NH); 3.26 (s, MeN); 2.65$2.35(m, 2 \mathrm{H}) ; 2.2-1.55(m, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 172.0,169.2(2 s, 2 \mathrm{C}=\mathrm{O}) ; 161.2,144.2(2 s, 2$ arom. C); 134.1, 129.2, 127.3, 126.9, 125.4, 118.2 ($6 d, 9$ arom. CH); 114.1 ($s, 1$ arom. C); 67.3 ($s, \mathrm{C}(\alpha)) ; 40.5$ (q, MeN); 39.3, $24.6\left(2 t, 4 \mathrm{CH}_{2}\right)$. Cl-MS: $339\left(40,[M+1]^{+}\right), 233(9), 232(100), 107(11)$. Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}(338.40)$: C 70.98, H 6.55, N 8.27 ; found: C 70.77, H 6.81, N 8.32.
1.3. 2-(2-Hydroxy-5-nitrobenzamido)-2,N-dimethyl- N -phenylpropanamide (8c). Analogously to 1.1 , 2 -hy-droxy-5-nitrobenzoic acid ($\mathbf{6 b} ; 1 \mathrm{~g}, 5.46 \mathrm{mmol}$) was reacted with 7 a ($950 \mathrm{mg}, 5.46 \mathrm{mmol}$): $1.73 \mathrm{~g}(89 \%)$ of $\mathbf{8 c}$. Yellow powder. M.p. 210.4°. IR: $3380 s, 3000 \mathrm{~m}, 1655 s, 1620 s, 1590 \mathrm{~s}, 1520 \mathrm{~s}, 1495 \mathrm{~s}, 1430 \mathrm{~m}, 1390 \mathrm{~s}, 1360 \mathrm{~m}, 1345 \mathrm{~s}$, $1305 s, 1250 \mathrm{~m}, 1205 \mathrm{~m}, 1195 \mathrm{w}, 1170 \mathrm{w}, 1120 \mathrm{~m}, 1070 \mathrm{~m}, 1020 \mathrm{w}, 1000 \mathrm{w}, 850 \mathrm{~m}, 760 \mathrm{~m}, 750 \mathrm{~m}, 705 \mathrm{~m}, 680 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}$: 8.65, $8.57(2 \mathrm{br} . s, 1$ arom. $\mathrm{H}, \mathrm{NH}) ; 8.22(d d, J=6.3,2.6,1$ arom. H); $7.15-7.0(\mathrm{~m}, 6 \operatorname{arom} . \mathrm{H}) ; 3.14(\mathrm{~s}, \mathrm{MeN})$; $1.53\left(s, \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 171.7,165.9(2 s, 2 \mathrm{C}=\mathrm{O}) ; 164.8,144.8,139.2$ ($3 s, 3$ arom. C); 129.2, 128.8, 127.2, 127.1, 125.6, 118.3 ($6 d, 8$ arom. CH); 116.5 ($s, 1$ arom. C); $57.6\left(s, \mathrm{Me}_{2} \mathrm{C}\right) ; 41.5(q, \mathrm{MeN}) ; 26.9\left(q, \mathrm{Me}_{2} \mathrm{C}\right) . \mathrm{Cl}-\mathrm{MS}:$ $358\left(77,[M+1]^{+}\right), 108(100)$. Anal calc. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}$ (357.36): C 60.49, H 5.35, N 11.75; found: C 60.46, H 5.30, N 11.91.
2. Hydrolysis of (Salicyloylamino) amides 8. 2.1. General Procedure. Peptide amides of type 8 were dissolved in THF/6N HCl 1:1 ($v / v ; c a .5 \mathrm{ml} / \mathrm{mmol})$ at 0° and stirred overnight at r.t. Then, the solvent was evaporated, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ were added and the layers separated. The aq. layer was washed once with $\mathrm{Et}_{2} \mathrm{O}$ and the combined org. layer dried (MgSO_{4}) and evaporated: salicyloyl-peptides 9 which were pure enough (up to 90%) to be used in the next step without further purification.
2.2. 2-(2-Hydroxybenzamido)-2-methylpropanoic Acid (9a). Recrystallized from EtOH. Colorless microcrystals. M.p. $182.1-183^{\circ}$. IR: $3420 s, 3070 w, 3010 w, 3000 w, 2880 w, 1770 s, 1650 s, 1595 s, 1535 s, 1495 s, 1475 m, 1450 s$, $1420 \mathrm{~m}, 1385 \mathrm{~s}, 1375 \mathrm{~s}, 1340 \mathrm{~m}, 1315 \mathrm{~m}, 1300 \mathrm{~s}, 1250 \mathrm{~s}, 1220 \mathrm{~m}, 1185 \mathrm{~m}, 1175 \mathrm{~m}, 1150 \mathrm{~m}, 1040 \mathrm{w}, 1020 \mathrm{w}, 925 \mathrm{~m}, 880 \mathrm{~m}$, $820 \mathrm{~m}, 815 \mathrm{~m}, 780 \mathrm{~s}, 755 \mathrm{~s}, 700 \mathrm{~m}, 615 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 12.2$ (br. $\left.s, \mathrm{COOH}\right) ; 8.78(\mathrm{~s}, \mathrm{NH}) ; 7.95-7.9(m, 1$ arom H); $7.4-7.35\left(m, 1\right.$ arom. H); 6.9-6.85 ($m, 2$ arom. H); $1.50\left(q, \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 175.3(s, \mathrm{COOH}) ; 167.8(s, \mathrm{C}=\mathrm{O})$; $159.3\left(s, 1\right.$ arom. C); 133.7, 128.8, 118.5, 117.2 ($4 d, 4$ arom. CH); $115.9(s, 1$ arom. C$) ; 55.7\left(s, \mathrm{Me}_{2} \mathrm{C}\right) ; 24.9$ ($q, \mathrm{Me}_{2} \mathrm{C}$). CI-MS: $224\left(100,[M+1]^{+}\right)$.
2.3. 1-(2-Hydroxybenzamido)cyclopentanecarboxylic Acid (9b). Recrystallized from MeCN. Colorless prisms. M.p. $205-206^{\circ}$. IR: $3430 \mathrm{~s}, 3010 \mathrm{~m}, 2970 \mathrm{~m}, 2880 \mathrm{~m}, 1705 \mathrm{~s}, 1645 \mathrm{~s}, 1595 \mathrm{~s}, 1520 \mathrm{~s}, 1495 \mathrm{~s}, 1450 \mathrm{~m}, 1415 \mathrm{~m}$, $1395{ }^{\prime}, 1370 s, 1330 s, 1300 s, 1285 s, 1255 s, 1230 s, 1205 s, 1180 \mathrm{~m}, 1145 \mathrm{w}, 1115 \mathrm{w}, 1050 \mathrm{w}, 1040 \mathrm{w}, 945 \mathrm{~m}, 860 \mathrm{~m}, 820 \mathrm{~m}$, $770 \mathrm{~m}, 755 \mathrm{~s}, 700 \mathrm{~m}, 625 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 8.82$ (br. $\left.s, \mathrm{NH}\right) ; 7.94(d d, J=6.5,1.8,1$ arom H$) ; 7.5-7.35(\mathrm{~m}, 1$ arom. H$)$; $6.95-6.85\left(m, 2\right.$ arom. H); 2.25-1.95(m,2 CH 2); 1.8-1.65 (m,2 CH ${ }_{2}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 175.1(s, \mathrm{COOH}) ; 168.8$ $(s, \mathrm{C}=\mathrm{O})$; $159.7(s, 1$ arom. C); 133.8, 128.6, 118.4, 117.3 ($4 d, 4$ arom CH); 115.5 ($s, 1$ arom. C); $65.6(s, \mathrm{C}(\alpha))$; 36.6, $24.4\left(2 t, 4 \mathrm{CH}_{2}\right)$. EI-MS: $249\left(38, M^{+`}\right), 203(20), 174(11), 138(14), 137(23), 122(12), 121(93), 120(40)$, $95(11), 93(24), 92(13), 84(100), 83(55), 82(15), 81(13), 74(16), 69(16), 67(24), 65(37)$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}$ (249.26): C 62.64, H 6.06, N 5.62; found: C 62.85, H 5.80, N 5.62.
2.4. 2-(2-Hydroxy-5-nitrobenzamido)-2-methylpropanoic Acid (9c). Hydrolysis of 8 c according to 2.1 yielded 9 c , which was used directly in the next step without further purification.
3. Reaction of (Salicyloylamino) Acids 9 with $\mathrm{N}-M e t h y l-\mathrm{N}$-phenyl-2H-azirin-3-amines 7. 3.1. General Procedure. To a well stirred soln. of $9(2.5 \mathrm{mmol})$ in dry $\mathrm{MeCN}(7 \mathrm{ml})$, a soln. of $7(2.5 \mathrm{mmol})$ in 0.5 ml of MeCN was added at 0°. The mixture was stirred under N_{2} overnight while raising the temp. from 0° to r.t. Then, the precipitated $\mathbf{1 0}$ was collected by filtration, washed with cold hexane $/ \mathrm{Et}_{2} \mathrm{O}$, and dried under h.v.
3.2. 2-[2-(2-Hydroxybenzamido)-2-methylpropanamido]-2,N-dimethyl-N-phenylpropanamide (10a). Yield $903 \mathrm{mg}(91 \%)$. Colorless powder. M.p. $235.5-236.1^{\circ}$. IR: $3330 \mathrm{~s}, 3310 \mathrm{~s}, 3060 \mathrm{w}, 3000 \mathrm{~m}, 2980 \mathrm{~m}, 2940 \mathrm{~m}, 1650 \mathrm{~s}$, $1540 \mathrm{~s}, 1635 \mathrm{~s}, 1595 \mathrm{~s}, 1535 \mathrm{~s}, 1490 \mathrm{~s}, 1465 \mathrm{~s}, 1445 \mathrm{~m}, 1395 \mathrm{~s}, 1370 \mathrm{~s}, 1335 \mathrm{~m}, 1305 \mathrm{~m}, 1290 \mathrm{w}, 1260 \mathrm{~m}, 1230 \mathrm{~s}, 1210 \mathrm{~m}$, $1170 \mathrm{~m}, 1140 \mathrm{~m}, 1110 \mathrm{w}, 1090 \mathrm{~s}, 1070 \mathrm{w}, 1040 \mathrm{w}, 1030 \mathrm{w}, 1005 \mathrm{w}, 850 \mathrm{~m}, 815 \mathrm{~m}, 755 \mathrm{~s}, 710 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 8.78(s, \mathrm{NH})$; $7.9-7.85(m, 1$ arom. H); $7.78(\mathrm{~s}, \mathrm{NH}) ; 7.4-7.3(\mathrm{~m}, 3$ arom. H); 7.25-7.2 ($\mathrm{m}, 3$ arom. H); 6.9-6.85 ($\mathrm{m}, 2$ arom. H); 3.23 (s, MeN); 1.48, 1.36 ($2 s, 2 \mathrm{Me}_{2} \mathrm{C}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 173.1,172.4,166.9$ ($3 \mathrm{~s}, 3 \mathrm{C}=\mathrm{O}$); 158.5, 145.6 ($2 \mathrm{~s}, 2$ arom. C); 133.2, 129.1, 128.7, 127.2, 126.4, 118.7 ($6 d, 8$ arom. CH); 117.3 ($s, 1$ arom. C); 117.0 ($d, 1$ arom. CH); 56.8, 56.7 ($2 s, 2 \mathrm{Me}_{2} \mathrm{C}$); $40.0(q, \mathrm{MeN}) ; 25.7,24.6$ ($2 q, 2 \mathrm{Me} e_{2} \mathrm{C}$). CI-MS: $398\left(86,[M+1]^{+}\right), 292(19), 291(100), 290(10)$, 206(5), 108 (8), 107 (11). Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$ (397.47): C 66.48, H 6.84, N 10.57; found: C 66.37, H 6.94 , N 10.82 .
3.3. 1-[2-(2-Hydroxybenzamido)-2-methylpropanamido]- N -methyl-N-phenylcyclopentanecarboxamide (10b). Yield $951 \mathrm{mg}(90 \%)$. Colorless powder. M.p. $230-230.9^{\circ}$. IR: $3320 \mathrm{~s}, 3060 \mathrm{w}, 2990 \mathrm{~m}, 2960 \mathrm{~m}, 1660 \mathrm{~s}, 1635 \mathrm{~s}, 1600 \mathrm{~s}$,
$1540 s, 1495 \mathrm{~s}, 1470 \mathrm{~m}, 1450 \mathrm{~s}, 1385 \mathrm{~s}, 1365 \mathrm{~s}, 1340 \mathrm{~m}, 1310 \mathrm{~m}, 1280 \mathrm{~m}, 1260 \mathrm{~m}, 1230 \mathrm{~s}, 1170 \mathrm{~m}, 1145 \mathrm{~m}, 1120 \mathrm{w}, 1100 \mathrm{w}$, $1080 w, 1040 w, 1030 w, 760 s, 705 m, 670 \mathrm{~m}, 625 m .{ }^{1} \mathrm{H}-\mathrm{NMR}: 11.91(\mathrm{br} . s, \mathrm{OH}) ; 8.73(s, \mathrm{NH}) ; 7.86(d d, J=6.6,1.1$, 1 arom. H); 7.73 (br. s, NH); 7.4-7.15 (m, 6 arom. H); 6.9-6.85 (m, 2 arom. H); 3.20 (s, MeN); 2.25-2.15 $(m, 2 \mathrm{H}) ; 1.9-1.65(m, 2 \mathrm{H}) ; 1.55-1.35(m$, with s at $1.45,10 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 173.0,172.3,167.0(3 s, 3 \mathrm{C}=\mathrm{O}) ; 158.5$, $145.5(2 s, 2$ arom. C); 133.1, 129.1, 128.6, 126.8, 125.9, 118.6 ($6 d, 8$ arom. CH); 117.2 ($s, 1$ arom. C); 116.9 (d, 1 arom. CH); 66.5, $56.7(2 s, 2 \mathrm{C}(\alpha)) ; 39.9(q, \mathrm{MeN}) ; 36.4,24.6\left(2 t, 4 \mathrm{CH}_{2}\right) ; 24.0\left(q, \mathrm{Me}_{2} \mathrm{C}\right)$. CI-MS: 425 $\left(74,[M+1]^{+}\right), 319(20), 318(100)$.
3.4. l-[1-(2-Hydroxybenzamido) cyclopentanecarboxamido]- N -methyl- $\mathrm{N}-$ phenylcyclopentanecarboxamide $(10 c)$. Yield $1.092 \mathrm{~g}(98 \%)$. Colorless powder. M.p. $271.5-272^{\circ}$. IR: $3320 \mathrm{~s}, 2970 \mathrm{~m}, 2880 \mathrm{~m}, 1660 \mathrm{~s}, 1635 \mathrm{~s}, 1600 \mathrm{~s}$, $1540 \mathrm{~s}, 1525 \mathrm{~s}, 1490 \mathrm{~m}, 1455 \mathrm{~m}, 1390 \mathrm{~m}, 1340 \mathrm{w}, 1310 \mathrm{~m}, 1260 \mathrm{~m}, 1230 \mathrm{~m}, 1145 \mathrm{w}, 1100 \mathrm{w}, 1040 \mathrm{w}, 755 \mathrm{~s}, 700 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): 8.48$ (br. s, NH); $7.9-7.85(\mathrm{~m}, 1$ arom H); 7.77 (br. s, NH); $7.45-7.15$ ($\mathrm{m}, 6$ arom. H); 6.95-6.85 ($m, 2$ arom. H); $3.21(s, \mathrm{MeN}$) ; 2.55-2.5 ($\mathrm{m}, 4 \mathrm{H}$) ; 2.2-1.85 ($\mathrm{m}, 8 \mathrm{H}$); 1.70 (br. $s, 4 \mathrm{H}$); 1.48 (br. $s, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO} / \mathrm{CF}_{3} \mathrm{COOH}\right): 175.9,173.3,169.0(3 \mathrm{~s}, 3 \mathrm{C}=\mathrm{O}) ; 160.0,138.0(2 s, 2$ arom. C$) ; 133.6,130.4,129.3,124.1$, 122.6, 118.2, 117.4 ($7 d, 9$ arom. CH); $117.2\left(s, 1\right.$ arom. C); $67.0,65.6(2 s, 2 \mathrm{C}(\alpha)) ; 36.7,35.4,24.6,24.3\left(4 t, 8 \mathrm{CH}_{2}\right)$; MeN could not be detected. Cl-MS: $447\left(4,[M+1]^{+}\right), 343(37), 342(10), 108(11), 107(27), 91(14), 85(14)$, $84(100), 82(11), 77(10), 67(18), 66(15), 65(13)$. Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4}$ (446.52): C 69.93, H 6.32, N 9.41; found: C 70.12, H 6.52, N 9.30.
3.5. 2-[1-(2-Hydroxybenzamido) cyclopentanecarboxamido]-2, N -dimethyl- N -phenylpropanamide (10d). Yield $1.03 \mathrm{~g}(98 \%)$. Colorless powder. M.p. $244.5-245.2^{\circ}$. IR: $3220 \mathrm{~s}, 2980 \mathrm{~m}, 2960 \mathrm{~m}, 2940 \mathrm{~m}, 1650 \mathrm{~s}, 1635 \mathrm{~s}, 1595 \mathrm{~s}, 1535 \mathrm{~s}$, $1490 \mathrm{~s}, 1470 \mathrm{~m}, 1450 \mathrm{~m}, 1395 \mathrm{~m}, 1365 \mathrm{~s}, 1335 \mathrm{~m}, 1310 \mathrm{~m}, 1260 \mathrm{~m}, 1230 \mathrm{~s}, 1200 \mathrm{~m}, 1170 \mathrm{w}, 1140 \mathrm{w}, 1090 \mathrm{~s}, 1040 \mathrm{w}, 1000 \mathrm{w}$, $770 w, 750 \mathrm{~m}, 750 \mathrm{~m}, 705 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 8.54$ (br. $\left.s, \mathrm{NH}\right) ; 7.9-7.85(\mathrm{~m}, 1$ arom. H); $7.80(\mathrm{~s}, \mathrm{NH}) ; 7.4-7.2$ $\left(m, 6\right.$ arom. H); 6.9-6.85 ($m, 2$ arom. H); $3.23(s, \mathrm{MeN}) ; 2.2-2.0(m, 4 \mathrm{H}) ; 1.65-1.6(m, 4 \mathrm{H}) ; 1.34\left(s, \mathrm{Me}_{2} \mathrm{C}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: 172.8,172.5,168.4$ ($3 \mathrm{~s}, 3 \mathrm{C}=0$); 159.1, 145.9 ($2 \mathrm{~s}, 2$ arom. C); 133.5, 129.2, 128.9, 127.4, 126.5, 118.8, $117.1\left(7 d, 9\right.$ arom. CH, 1 arom. C); 67.2, $56.8(2 s, 2 \mathrm{C}(\alpha)) ; 40.0(q, \mathrm{MeN}) ; 36.3\left(t, 2 \mathrm{CH}_{2}\right) ; 25.7\left(q, \mathrm{Me}_{2} \mathrm{C}\right) ; 24.1$ $\left(t, 2 \mathrm{CH}_{2}\right)$. CI-MS: $423\left(100,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}(423.51)$: C $68.06, \mathrm{H} 6.90, \mathrm{~N} 9.92$; found: C 67.98, H 7.11, N 9.82.
3.6. 2-/2-(2-Hydroxy-5-nitrobenzamido)-2-methylpropanamido $/-2, \mathrm{~N}$-dimethyl-N-phenylpropanamide (10e). Yield $961 \mathrm{mg}(87 \%)$. Yellow microcrystals. M.p. $124-126^{\circ}$ (dec.). IR: $3280 \mathrm{~m}, 3060 w, 2980 w, 2940 w, 1650 s, 1630 s$, $1605 s, 1595 s, 1545 m, 1520 s, 1490 s, 1390 m, 1365 m, 1340 s, 1300 s, 1220 m, 1200 \mathrm{~m}, 1170 w, 1140 \mathrm{~m}, 1115 w, 1090 w$, $705 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR} ; 9.20(s, \mathrm{NH}) ; 8.81(d, J=2.9,1$ arom. H); $8.24(d d, J=6.2,2.9,1$ arom. H); $7.80(s, \mathrm{NH})$; $7.4-7.0\left(m, 6\right.$ arom. H); $3.23(\mathrm{~s}, \mathrm{MeN}) ; 1.50,1.37\left(2 \mathrm{~s}, 2 \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 175.7,168.2,166.1$ ($3 s, 3 \mathrm{C}=\mathrm{O}$); 146.8, 141.6 ($2 s, 2$ arom. C); 130.6, 129.8, 128.9, 128.8, 127.0, 119.3 ($6 d, 8$ arom. $\mathrm{CH}, 1$ arom. C); $59.2\left(s, \mathrm{Me}_{2} \mathrm{C}\right) ; 41.6(q, \mathrm{MeN}) ; 26.6,25.5\left(2 q, 2 \mathrm{Me} e_{2} \mathrm{C}\right) ; 1 \mathrm{Me}_{2} \mathrm{C}$ could not be detected. CI-MS: $443\left(36,[M+1]^{+}\right)$, $337(11), 336(58), 306(15), 193(10), 108(100), 107(45)$.
4. Reaction of Salicyloyl-dipeptides 10 with dry HCl: Cyclic Depsipeptides 11. 4.1. General Procedure. Through a well stirred soln. of the corresponding dipeptide 10 ($150 \mathrm{mg}, 0.5-0.15 \mathrm{mmol}$) in abs. DMF ($50-62 \mathrm{ml}$, $c=0.008 \mathrm{M}$), a stream of dry HCl gas was bubbled for $c a .30 \mathrm{~min}$ at 60°. After completion of the reaction (TLC), a stream of N_{2} was passed through the soln. for another 2 h with good stirring at 60° to remove excess HCl . Then, the solvent was evaporated and the residue filtered through a short column of $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 14: 1\right)$ yielding 11.
4.2. 3,4,6,7-Tetrahydro-3,3,6,6,-tetramethyl-2H-1,4,7-benzoxadiazecine-2,5,8-trione (11a). Crystallized from i- $\mathrm{PrOH} / \mathrm{Et}_{2} \mathrm{O} /$ hexane: $133 \mathrm{mg}\left(92 \%\right.$). Colorless powder. M.p. $239.7-244^{\circ}$ (dec.). IR: 3400 s (br.), $2980 \mathrm{~m}, 2930 \mathrm{~m}$, $1630 s, 1605 s, 1500 \mathrm{~m}, 1455 \mathrm{~s}, 1415 \mathrm{~m}, 1385 \mathrm{~m}, 1365 \mathrm{~s}, 1325 \mathrm{~m}, 1220 \mathrm{~m}, 1175 \mathrm{w}, 1100 \mathrm{w}, 1040 \mathrm{w}, 1020 \mathrm{w}, 755 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}$: 9.19 (br. s, NH); 7.9-7.8 ($\mathrm{m}, 1$ arom. H, NH); 7.35-7.3 ($\mathrm{m}, 1$ arom. H); 6.95-6.75 ($\mathrm{m}, 2$ arom. H); 1.46, 1.40 $\left(2 s, 2 \mathrm{Me}_{2} \mathrm{C}\right.$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 183.6,175.9,169.2(3 s, 3 \mathrm{C}=\mathrm{O})$; 150.6 ($s, 1$ arom. C); 134.7, 130.7, 120.2 ($3 d, 3$ arom. CH); $118.5\left(s, 1\right.$ arom. C); 118.1 ($d, 1$ arom. CH); $58.6,58.3\left(2 s, 2 \mathrm{Me}_{2} \mathrm{C}\right) ; 25.6,25.1$ ($2 q, 2 \mathrm{Me}_{2} \mathrm{C}$). CI-MS: $291\left(10,[M+1]^{+}\right), 206(100), 178(94)$.
4.3. 6,7-Dihydro-6,6-dimethylspiro [$2 \mathrm{H}-1,4,7$-benzoxadiazecine- $3(4 \mathrm{H}$),1-cyclopentane]-2,5,8-trione (11b). Crystallized from i- $\mathrm{PrOH} / \mathrm{Et}_{2} \mathrm{O} /$ hexane: 106 mg (96%). Colorless powder. M.p. $235.6-240^{\circ}$ (dec.). IR: 3400 s (br.), $2970 \mathrm{~m}, 2870 \mathrm{~m}, 1630 \mathrm{~s}, 1605 \mathrm{~s}, 1455 \mathrm{~m}, 1415 \mathrm{~m}, 1385 \mathrm{~m}, 1370 \mathrm{~m}, 1325 \mathrm{w}, 1305 \mathrm{w}, 1235 \mathrm{w}, 1100 \mathrm{w}, 1040 \mathrm{w}, 1020 \mathrm{w}, 655 \mathrm{~m}$. ${ }^{1} \mathrm{H}$-NMR: $8.96(s, \mathrm{NH}) ; 7.88(d d, J=6.3,1.3,1$ arom. H); $7.77(s, \mathrm{NH}) ; 7.4-7.3(m, 1$ arom. H); 6.95-6.8 $\left(m, 2\right.$ arom. H); $2.0-1.85(m, 4 \mathrm{H}) ; 1.75-1.6(m, 4 \mathrm{H}) ; 1.47\left(s, \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 182.5,177.0$, $169.6(3 s, 3 \mathrm{C}=\mathrm{O}) ; 159.1$ ($s, 1$ arom. C); 135.0, 131.1, 120.8 ($3 d, 3$ arom. CH); $118.9(s, 1$ arom. C); 118.0 ($d, 1$ arom. CH) ; 68.8, $58.4(2 s, \mathrm{C}(3), \mathrm{C}(6)) ; 38.1\left(t, 2 \mathrm{CH}_{2}\right) ; 35.6,25.9\left(2 q, M e_{2} \mathrm{C}\right) ; 25.8\left(t, 2 \mathrm{CH}_{2}\right)$.
4.4. Dispiro[cyclopentane-1, $3^{\prime}\left(4^{\prime} \mathrm{H}\right)$-[$2 \mathrm{H}-1,4,7$-benzoxadiazecine- $6^{\prime}\left(7^{\prime} \mathrm{H}\right), 1^{\prime \prime}$-cyclopentane]-2', $5^{\prime}, 8^{\prime}$-trione (11 c). Crystallized from $\mathrm{i}-\mathrm{PrOH} / \mathrm{Et}_{2} \mathrm{O} /$ hexane: $47 \mathrm{mg}\left(93 \%\right.$). Colorless powder. M.p. 245° (dec.). IR: 3400 s (br.),
$2960 \mathrm{~m}, 2930 \mathrm{~m}, 2860 \mathrm{~m}, 1640 \mathrm{~s}, 1610 \mathrm{~s}, 1570 \mathrm{~s}, 1550 \mathrm{~s}, 1495 \mathrm{~m}, 1455 \mathrm{~m}, 1420 \mathrm{~m}, 1385 \mathrm{~m}, 1330 \mathrm{~m}, 1235 \mathrm{~m}, 1100 \mathrm{w}, 1040 \mathrm{w}$, $755 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ 8.85(\mathrm{~s}, \mathrm{NH}) ; 7.9-7.8(\mathrm{~m} 1$ arom. H); $7.71(\mathrm{~s}, \mathrm{NH}) ; 7.4 \sim 7.3$ ($\mathrm{m}, 1$ arom. H); 6.9-6.85 $\left(m, 2\right.$ arom. H); 2.25-2.1 $(m, 2 \mathrm{H}) ; 1.95-1.85(m, 6 \mathrm{H}) ; 1.65-1.4(m, 8 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 182.4,176.3$, $169.5(3 \mathrm{~s}, 3 \mathrm{C}=\mathrm{O}) ; 158.7(\mathrm{~s}, 1$ arom. C); 134.7, 130.8, 120.6 ($3 \mathrm{~d}, 3$ arom. CH); 118.9 ($s, 1$ arom. C); 117.7 (d, 1 arom. CH); 68.7, $68.8\left(2 s, \mathrm{C}\left(3^{\prime}\right), \mathrm{C}\left(6^{\prime}\right)\right) ; 37.8,37.5,25.5,24.9\left(4 t, 8 \mathrm{CH}_{2}\right)$.
4.5. 3,4-Dihydro-3,3-dimethylspiro [2H-1,4,7-benzoxadiazecine-6(7H),1-cyclopentane]-2,5,8-trione (11d). Crystallized from $\mathrm{i}-\mathrm{PrOH} / \mathrm{Et}_{2} \mathrm{O} /$ hexane: 106 mg (95%). Colorless powder. M.p. 280° (dec.). IR: 3400 s (br.), $2970 \mathrm{~m}, 2880 \mathrm{w}, 1630 \mathrm{~s}, 1610 \mathrm{~s}, 1550 \mathrm{~s}, 1535 \mathrm{~s}, 1495 \mathrm{~m}, 1475 \mathrm{~m}, 1455 \mathrm{~m}, 1420 \mathrm{~m}, 1385 \mathrm{~m}, 1365 \mathrm{~m}, 1330 \mathrm{~m}, 1240 \mathrm{~m}, 1220 \mathrm{~m}$, $1160 w, 1110 w, 1045 w, 755 m, 620 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz): 9.23 (br. s, NH); 7.92 ($d d, J=6.7,1.1,1$ arom. H); $7.90(\mathrm{~s}, \mathrm{NH}) ; 7.35-7.3(\mathrm{~m}, 1$ arom. H); 6.9-6.8 ($\mathrm{m}, 2 \operatorname{arom} . \mathrm{H}$); 2.15-2.05 ($m, 2 \mathrm{H}$); 2.0-1.95 ($m, 2 \mathrm{H}$); 1.7-1.6 $(m, 4 \mathrm{H}) ; 1.38\left(s, \mathrm{Me}_{2} \mathrm{C}\right){ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 182.3,175.3,169.3$ (3s, $3 \mathrm{C}=\mathrm{O}$); 158.8 ($\mathrm{s}, 1$ arom. C$) ; 134.7,131.0$, $120.6(3 d, 3$ arom. CH$) ; 118.7\left(\mathrm{~s}, 1\right.$ arom. C); $117.8(d, 1$ arom. CH$) ; 68.8,58.6(2 \mathrm{~s}, \mathrm{C}(3), \mathrm{C}(6)) ; 37.6\left(t, 2 \mathrm{CH}_{2}\right)$; $25.3\left(q, M e_{2} \mathrm{C}\right) ; 24.8\left(t, 2 \mathrm{CH}_{2}\right)$. CI-MS: $317\left(6,[M+1]^{+}\right), 233(13), 232(73), 204(16), 120(34), 102(27), 91(13)$, 86(11), $85(23), 73(100), 72(15)$.
4.6. 3,4,6,7-Tetrahydro-3,3,6,6-tetramethyl-10-nitro-2H-1,4,7-benzoxadiazecine-2,5,8-trione (11e). Crystallized from $\mathrm{i}-\mathrm{PrOH} / \mathrm{hexane}: 95 \mathrm{mg}(88 \%)$. Yellow powder. M.p. 295° (dec.). IR: 3400 s (br.), $2980 \mathrm{w}, 2930 \mathrm{~m}, 1620 \mathrm{~s}$, $1590 \mathrm{~s}, 1540 \mathrm{~s}, 1475 \mathrm{~s}, 1430 \mathrm{~m}, 1385 \mathrm{~m}, 1365 \mathrm{~m}, 1310 \mathrm{~s}, 1205 \mathrm{~m}, 1195 \mathrm{~m}, 1080 \mathrm{~m}, 845 \mathrm{~m}, 710 \mathrm{~m}, 695 \mathrm{~m}, 645 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}:$ $11.50(s, \mathrm{NH}) ; 8.50(d, J=3.3,1$ arom. H$) ; 7.87(s, \mathrm{NH}) ; 7.79(d d, J=6.2,3.3,1$ arom. H$) ; 6.25(d, J=6.5$, 1 arom. H); 1.41, 1.39 ($2 s, 2 \mathrm{Me}_{2} \mathrm{C}$).
5. 3,4,6,7-Tetrahydro-3,3-dimethyl-2H-1,4,7-benzoxadiazecine-2,5,8-trione (18). 5.1. Benzyl N-(2-Hydroxybenzoyl)glycinate (15). To a well stirred soln. of $6 \mathrm{a}(1 \mathrm{~g}, 7.24 \mathrm{mmol})$ in dry $\mathrm{MeCN}(25 \mathrm{ml})$ at 0°, CME-CDl ($3.220 \mathrm{~g}, 1.05$ equiv.) was added. The mixture was stirred for 30 min under N_{2}, then glycinium benzyl ester toluene- 4 -sulfonate ($14 ; 2.687 \mathrm{~g}, 1.1$ equiv.) was added followed by slow addition of $E t_{3} \mathrm{~N}(1.2$ equiv.). The mixture was stirred overnight, raising the temp. from 0° to r.t. Filtration of the formed urea and evaporation led to a residue that was dissolved in AcOEt. The soln. was washed with $\mathrm{H}_{2} \mathrm{O}, 5 \%$ citric acid, $\mathrm{H}_{2} \mathrm{O}, 10 \% \mathrm{NaHCO}_{3}$ soln., and again $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated and the residue purified by flash chromatography (hexane/ AcOEt $4: 1): 1.487 \mathrm{~g}(72 \%)$ of $\mathbf{1 5}$. Colorless powder. M.p. $109.4-105.4^{\circ}$. IR: $3420 \mathrm{~s}, 3060 \mathrm{w}, 3040 \mathrm{~m}, 2990 \mathrm{w}, 2960 \mathrm{w}, \mathbf{1 7 3 0 s}$, $1645 \mathrm{~s}, 1600 \mathrm{~s}, 1545 \mathrm{~s}, 1490 \mathrm{~m}, 1450 \mathrm{~m}, 1415 \mathrm{~m}, 1395 \mathrm{~m}, 1370 \mathrm{~m}, 1335 \mathrm{~m}, 1310 \mathrm{~m}, 1275 \mathrm{~s}, 1255 \mathrm{~m}, 1235 \mathrm{~s}, 1205 \mathrm{~s}, 1150 \mathrm{~m}$, $1115 w, 1045 w, 1030 w, 1005 w, 990 \mathrm{~m}, 820 \mathrm{~m}, 750 \mathrm{~s}, 730 \mathrm{~s}, 695 \mathrm{~m} .{ }^{1} \mathrm{H}$-NMR: 12.20 (br. s, OH); 9.22 (br. s, NH); $7.85\left(d d, J=6.3,1.6,1\right.$ arom H); 7.45-7.35 ($\mathrm{m}, 6$ arom. H); 6.95-6.85 ($\mathrm{m}, 2$ arom. H); $5.16\left(\mathrm{~s}, \mathrm{PhCH} \mathrm{H}_{2}\right.$); 4.12 $\left(d, J=5.1, \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 169.6,168.9(2 s, 2 \mathrm{C}=\mathrm{O}) ; 159.6(s, 1$ arom. C$) ; 134.0,128.5,128.4,128.2,128.0$, $119.0,117.4(7 d, 9$ arom. CH$) ; 115.4(s, 1$ arom. C$) ; 66.1\left(t, \mathrm{PhCH}_{2}\right) ; 40.1\left(t, \mathrm{CH}_{2} \mathrm{~N}\right) . \mathrm{Cl}-\mathrm{MS}: 286\left(100,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}$ (285.29): C 67.35, H 5.30, N 4.90 ; found: C 67.29, H 5.20, N 5.06.
5.2. N -(2-Hydroxybenzoyl)glycine (16). To a soln. of $\mathbf{1 5}$ ($1 \mathrm{~g}, 3.5 \mathrm{mmol}$) in MeOH (10 ml), $10 \% \mathrm{Pd} / \mathrm{C}$ $(100 \mathrm{mg})$ was added at 0° and the mixture stirred overnight at r.t. under H_{2}. Then, the soln. was filtered over a Celite pad, the solvent evaporated, and the resulting residue purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 14:1): $627 \mathrm{mg}(92 \%)$ of 16 . Colorless powder. M.p. $150.1-151.8^{\circ}$. IR: $3400 \mathrm{~s}, 3350 \mathrm{~s}, 1710 \mathrm{~s}, 1610 \mathrm{~s}, 1565 \mathrm{~s}, 1550 \mathrm{~s}$, $1540 \mathrm{~s}, 1500 \mathrm{~s}, 1460 \mathrm{~s}, 1445 \mathrm{~m}, 1435 \mathrm{~m}, 1345 \mathrm{~s}, 1290 \mathrm{~m}, 1260 \mathrm{~s}, 1240 \mathrm{~s}, 1210 \mathrm{~m}, 1160 \mathrm{~m}, 1095 \mathrm{~m}, 1040 \mathrm{w}, 1000 \mathrm{w}, 760 \mathrm{~m}$, $640 \mathrm{~m}, 620 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 9.11$ (br. s, NH); $7.86(d, J=7.6,1$ arom. H); $7.39(t, J=7.5,1$ arom. H); 6.95-6.85 ($m, 2$ arom. H); $3.98\left(d, J=5.2, \mathrm{CH}_{2} \mathrm{~N}\right.$), ${ }^{13} \mathrm{C}-\mathrm{NMR}: 171.1,168.7(2 s, 2 \mathrm{C}=\mathrm{O}$); 159.6 ($s, 1$ arom. C); 133.9, 128.4, 118.9, 117.4 ($4 d, 4$ arom. CH); $115.5\left(s, 1\right.$ arom. C); $40.9\left(t, \mathrm{CH}_{2} \mathrm{~N}\right)$. CI-MS: $196\left(100,[M+1]^{+}\right)$.
5.3. 2-[2-(2-Hydroxybenzamido) acetamido]-2,N-dimethyl- N -phenylpropanamide (17). To a soln. of 16 $(500 \mathrm{mg}, 2.56 \mathrm{mmol})$ in dry $\mathrm{MeCN}(6 \mathrm{ml})$, a soln. of $7 \mathrm{a}(445 \mathrm{mg}, 2.56 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{ml})$ was added at 0°. The mixture was stirred overnight, raising the temp. from 0° to r.t. The precipitate was collected by filtration, washed with cold hexane $/ \mathrm{Et}_{2} \mathrm{O}$, and dried under h.v.: $869 \mathrm{mg}(86 \%)$ of 17 . Colorless powder. M.p. $161-162.5^{\circ}$. IR: $3300 \mathrm{~s}, 3060 \mathrm{w}, 2980 \mathrm{w}, 2940 \mathrm{w}, 1645 \mathrm{~s}, 1600 \mathrm{~s}, 1550 \mathrm{~s}, 1540 \mathrm{~s}, 1500 \mathrm{~s}, 1450 \mathrm{~m}, 1390 \mathrm{~s}, 1365 \mathrm{~s}, 1310 \mathrm{~m}, 1260 \mathrm{~m}, 1230 \mathrm{~m}$, $1150 w, 1120 w, 1095 w, 1075 w, 1040 w, 1000 w, 760 \mathrm{~m}, 710 \mathrm{~m} .{ }^{1} \mathrm{H}$-NMR: 8.94 (br. s, NH); $7.86(d d, J=6.3$, 1.6, 2 arom. H); 7.4-7.15 ($\mathrm{m}, 5$ arom. H, NH); $6.95-6.9$ ($\mathrm{m}, 2$ arom. H); 3.64 (br. $s, \mathrm{CH}_{2} \mathrm{~N}$); $3.13(\mathrm{~s}, \mathrm{MeN}$); $1.36\left(s, \mathrm{Me}_{2} \mathrm{C}\right)$. CI-MS: $370\left(10,[M+1]^{+}\right), 264(15), 263(100), 178(31), 108(25)$.
5.4. Cyclization to 18. According to 4.1 reaction of $17(100 \mathrm{mg}, 0.27 \mathrm{mmol})$ in dry DMF ($34 \mathrm{ml}, c=0.008 \mathrm{~m}$) led to $66 \mathrm{mg}\left(95 \%\right.$) of 18 . Colorless powder. M.p. $238-240^{\circ}$ (dec.). IR (KBr): 3400 s (br.), $3060 \mathrm{~m}, 2980 \mathrm{w}, 2930 w$, 1645 s (br.), $1600 \mathrm{~s}, 1550 \mathrm{~s}, 1490 \mathrm{~m}, 1470 \mathrm{~m}, 1455 \mathrm{~m}, 1415 \mathrm{~m}, 1385 \mathrm{~m}, 1365 \mathrm{~m}, 1250 \mathrm{~m}, 1210 \mathrm{w}, 1155 \mathrm{w}, 1105 \mathrm{w}, 1040 \mathrm{w}$, $755 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 9.55$ (br. $\left.s, \mathrm{NH}\right) ; 7.96$ (s, NH); 7.87 ($d d, J=6.6,1.2,1$ arom. H); 7.35-7.2 ($\mathrm{m}, 1$ arom. H); 6.95$6.75\left(m, 2\right.$ arom. H); $3.86\left(d, J=4.6, \mathrm{CH}_{2} \mathrm{~N}\right) ; 1.40\left(s, \mathrm{Me}_{2} \mathrm{C}\right)$.
6. Reactions with Anthranilic-Acid Derivatives. 6.1. N-[(Benzyloxy)carbonyl]anthranilic Acid (19). To a well stirred soln. of anthranilic acid $(2.5 \mathrm{~g}, 18.24 \mathrm{mmol})$ in dioxane $/ 1 \mathrm{~N} \mathrm{NaOH} 1: 1(60 \mathrm{ml})$ at 0°, benzylchloroformate
(= benzyl carbonochloridate; $\mathrm{Z}-\mathrm{Cl} ; 3 \mathrm{ml}, 1.25$ equiv.) was slowly added. The mixture was stirred overnight at r.t., the dioxane evaporated, 2 N HCl added until $\mathrm{pH} 1-2$ was reached, and the soln. washed twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated and the residue crystallized from MeCN . The solid was washed with hexane and dried under h.v.: $3.558 \mathrm{~g}(72 \%)$ of 19 . Colorless microcrystals. M.p. 135-137 . IR : 3220s, $3030 w, 2960 w, 2880 w, 1735 s, 1695 s, 1605 s, 1590 s, 1535 s, 1450 s, 1410 \mathrm{~m}, 1375 s, 1300 \mathrm{~s}, 1255 \mathrm{~s}, 1240 \mathrm{~s}, 1230 \mathrm{~s}, 1195 s$, $1160 \mathrm{~s}, 1140 \mathrm{~s}, 1090 \mathrm{~m}, 1085 \mathrm{~m}, 1040 \mathrm{~s}, 1000 \mathrm{w}, 980 \mathrm{~m}, 805 \mathrm{~m}, 780 \mathrm{~m}, 755 \mathrm{~s}, 695 \mathrm{~s}, 670 \mathrm{~m}, 650 \mathrm{~s}, 625 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 13.67$ $(s, \mathrm{COOH}) ; 10.80(s, \mathrm{NH}) ; 8.3-8.25(m, 1$ arom. H$) ; 7.97(d d, J=6.4,1.5,1$ arom H$) ; 7.65-7.55(m, 1$ arom. H$)$; $7.45-7.3\left(m, 5\right.$ arom. H); 7.15-7.05 ($m, 1$ arom. H); $5.18\left(s, \mathrm{PhCH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 171.5,155.1(2 \mathrm{~s}, 2$ $\mathrm{C}=\mathrm{O}$); 143.1, 138.0 ($2 \mathrm{~s}, 2$ arom. C); 135.6, 132.8, 129.8, 129.5, 129.4, 123.1, 119.8 (7d, 9 arom. CH); 116.8 ($s, 1$ arom. C); $68.1\left(t, \mathrm{PhCH}_{2}\right) . \mathrm{CI}-\mathrm{MS}: 272\left(12,[M+1]^{+}\right), 181(25), 164(100), 91$ (30).
6.2. $2-\{2-\{/($ Benzyloxy $)$ carbonyl/amino $\}$ benzamido $\}-2, \mathrm{~N}$-dimethyl- N -phenylpropanamide (20). To a well stirred soln. of $19(1.5 \mathrm{~g}, 5.53 \mathrm{mmol})$ in dry $\mathrm{MeCN}(12 \mathrm{ml})$, a soln. of $7 \mathbf{a}(962 \mathrm{mg}, 5.53 \mathrm{mmol})$ in $\mathrm{MeCN}(4 \mathrm{ml})$ was added at 0°. The mixture was stirred overnight, raising the temp. from 0° to r.t. The precipitate was collected by filtration, washed with hexane, and dried under h.v.: 2.25 g (92%) of $\mathbf{2 0}$. Recrystallization from EtOH: 2.116 g (86%). Colorless microcrystals. M.p. $168.3-168.6^{\circ}$. IR: $3320 \mathrm{~m}, 3280 \mathrm{~s}, 3060 \mathrm{w}, 3000 \mathrm{w}, 2990 \mathrm{w}, 1740 \mathrm{~s}, 1645 \mathrm{~s}, 1635 \mathrm{~s}, 1595 \mathrm{~s}$, $1540 s, 1530 s, 1520 s, 1495 s, 1450 s, 1395 s, 1375 s, 1365 s, 1320 s, 1285 s, 1250 \mathrm{~m}, 1240 \mathrm{~s}, 1220 \mathrm{~s}, 1210 \mathrm{~s}, 1105 \mathrm{~m}, 1090 \mathrm{~s}$, $1040 \mathrm{~s}, 1030 \mathrm{~m}, 1005 \mathrm{w}, 950 \mathrm{~m}, 925 \mathrm{~m}, 875 \mathrm{~m}, 845 \mathrm{~m}, 765 \mathrm{~m}, 760 \mathrm{~s}, 745 \mathrm{~s}, 710 \mathrm{~s}, 695 \mathrm{~s}, 615 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 10.72$ $(s, N H) ; 8.35(d, J=8.5,1$ arom. H); 7.5-7.15 ($m, 11$ arom. H); 7.0-6.85 ($m, 2$ arom. H); 6.47 (s, NH); 5.21 $\left(s, \mathrm{PhCH}_{2}\right) ; 3.28(s, \mathrm{MeN}) ; 1.60\left(s, \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 172.8,167.7,153.6(3 s, 3 \mathrm{C}=\mathrm{O}) ; 144.2,144.0$, 136.3 ($3 s, 3$ arom. C); 132.4, 129.4, 128.4, 128.2, 128.0, 127.8, 127.6, 126.5, 121.4, 119.8 (10d, 14 arom. CH); $119.6\left(s, 1\right.$ arom. C); $66.6\left(t, \mathrm{PhCH}_{2}\right) ; 58.4\left(s, \mathrm{Me}_{2} C\right) ; 41.3(q, \mathrm{MeN}) ; 26.4\left(q, \mathrm{Me}_{2} \mathrm{C}\right) . \mathrm{CI}-\mathrm{MS}: 446\left(33,[M+1]^{+}\right)$, $340(18), 339(100), 231(43), 225(35), 108(28), 71$ (13). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$ (445.51): C 70.09, H 6.10, N 9.43; found: C 70.10, H 6.04, N 9.52.
6.3. 2-\{2-\{/(Benzyloxy)carbonyl/amino\}benzamido\}2-methylpropanoic Acid (21). According to 2.1, hydrolysis of $\mathbf{2 0}(1 \mathrm{~g}, 2.24 \mathrm{mmol})$ led to $789 \mathrm{mg}(99 \%)$ of 21. Colorless flakes. M.p. $197-198.2^{\circ}$. IR: $3350 \mathrm{~m}, 3320 \mathrm{~m}, 3030 \mathrm{w}$, $2995 w, 2960 w, 1715 s$ (br.), $1650 s, 1605 s, 1590 s, 1530 s, 1520 s, 1465 m, 1450 s, 1420 m, 1380 \mathrm{~m}, 1365 w, 1325 m, 1295 s$, $1285 s, 1260 m, 1240 s, 1220 s, 1185 m, 1175 m, 1165 m, 1105 w, 1075 w, 1040 s, 1005 w, 985 m, 945 m, 920 m, 875 m, 845 m$, $770 \mathrm{~s}, 755 \mathrm{~s}, 705 \mathrm{~s}, 680 \mathrm{~m}, 615 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 12.30$ (br. s, COOH); $10.64,8.74(2 \mathrm{~s}, 2 \mathrm{NH}) ; 8.18(d d, J=7.4,0.9$, 1 arom. H$) ; 7.76(d d, J=6.5,1.4,1$ arom. H$) ; 7.55-7.3(m, 6$ arom. H$) ; 7.15-7.1(m, 1$ arom. H$) ; 5.15\left(s, \mathrm{PhCH}_{2}\right)$; $1.43\left(s, \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 175.5,168.3,152.9(3 s, 3 \mathrm{C}=\mathrm{O}) ; 139.1,136.6(2 s, 2$ arom. C$) ; 129.0,128.7,128.3$, $121.9(4 d, 8$ arom. CH$) ; 120.0\left(s, 1\right.$ arom. C) ; $118.7(d, 1$ arom. CH$) ; 66.3\left(t, \mathrm{PhCH}_{2}\right) ; 56.0\left(s, \mathrm{Me}_{2} C\right) ; 25.0$ $\left(q, M e_{2} \mathrm{C}\right)$. CI-MS: $357\left(100,[M+1]^{+}\right), 340(13), 339(54), 313(22), 295(19), 263(11), 223(17), 222(13), 215(24)$, 214(25), 205(67), 204(29), 91 (18).
6.4. $2-\{2-\{2-\{[($ Benzyloxy $)$ carbonyl $]$ amino $\}$ benzamido $\}-2-m e t h y l p r o p a n a m i d o ~\}-2, ~ \mathrm{~N}$-dimethyl- N -phenylpropanamide (22). Analogously to 6.2 , reaction of $21(560 \mathrm{mg}, 1.57 \mathrm{mmol})$ with $7 \mathbf{7 a}(273 \mathrm{mg}, 1.56 \mathrm{mmol})$ led to 22 : $707 \mathrm{mg}(85 \%$; recrystallized from EtOH). Colorless powder. IR: 3320 s (br.), $3060 \mathrm{w}, 3040 \mathrm{w}, 2980 \mathrm{w}, 2940 \mathrm{w}, \mathbf{1 7 3 5 s}$, $1660 \mathrm{~s}, 1640 \mathrm{~s}$ (br.), $1590 \mathrm{~s}, 1530 \mathrm{~s}, 1520 \mathrm{~s}, 1495 \mathrm{~m}, 1470 \mathrm{~m}, 1450 \mathrm{~s}, 1435 \mathrm{~s}, 1395 \mathrm{~m}, 1370 \mathrm{~m}, 1365 \mathrm{~s}, 1325 \mathrm{~m}, 1300 \mathrm{w}, 1280 \mathrm{~m}$, $1250 s, 1215 s, 1175 w, 1165 w, 1100 \mathrm{~m}, 1090 \mathrm{~s}, 1045 \mathrm{~s}, 1030 \mathrm{~m}, 1000 \mathrm{w}, 760 \mathrm{~s}, 745 \mathrm{~m}, 710 \mathrm{~s}, 700 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 10.43$, $8.35(2 s, 2 \mathrm{NH}) ; 8.11(d d, J=7.4,0.9,1$ arom. H); $7.80(d d, J=6.5,1.4,1$ arom. H); $7.72(s, \mathrm{NH}) ; 7.55-7.1$ ($m, 12$ arom. H); $5.10\left(s, \mathrm{PhCH}_{2}\right) ; 3.21(s, \mathrm{MeN}) ; 1.44,1.31\left(2 s, 2 \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 172.4,172.0,167.4$, $152.3(4 s, 4 \mathrm{C}=\mathrm{O}) ; 145.1,138.0,135.7$ ($3 \mathrm{~s}, 3$ arom. C); 131.1, 128.1, 127.8, 127.5, 127.4, 127.3, 126.6, 125.7 ($8 d, 12$ arom. CH); 121.3 ($s, 1$ arom. C); 120.9, 118.4 ($2 d, 2$ arom. CH); $65.5\left(t, \mathrm{PhCH}_{2}\right) ; 56.4,56.1\left(2 s, 2 \mathrm{Me}_{2} C\right)$; $39.8(q, \mathrm{MeN}) ; 24.9,24.3\left(2 q, 2 \mathrm{Me}_{2} \mathrm{C}\right)$. CI-MS: $531\left(2,[M+1]^{+}\right), 424(13), 387(13), 386(49), 339(15), 321(21)$, 283 (31), 281 (12), 231 (14), 198 (25), 197 (10), 194(29), 193 (100), 148 (11), 147(26), 108 (74), 107 (19), 91 (53). Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{5}$ (530.62): C 67.90, H 6.45, N 10.55; found: C 67.98, H 6.65, N 10.80.
6.5. 2-/ 2-(2-Aminobenzamido)-2-methylpropanamido]-2,N-dimethyl- N -phenylpropanamide (23). Analogously to 5.2 , hydrogenolysis of $\mathbf{2 2}(500 \mathrm{mg}, 0.94 \mathrm{mmol})$ yielded $343 \mathrm{mg}(92 \%)$ of $\mathbf{2 3}$. Colorless powder. M.p. $183.5-185^{\circ}$. IR: $3460 \mathrm{~s}, 3340 \mathrm{~s}, 2980 \mathrm{w}, 2940 \mathrm{w}, 1660 \mathrm{~s}, 1635 \mathrm{~s}, 1590 \mathrm{~m}, 1580 \mathrm{~m}, 1525 \mathrm{~s}, 1490 \mathrm{~s}, 1395 \mathrm{~m}, 1365 \mathrm{~m}, 1325 \mathrm{w}, 1265 \mathrm{~m}, 1215 \mathrm{w}$, $1200 w, 1170 w, 1155 w, 1090 m, 1070 w, 1025 w, 1000 w, 750 \mathrm{~m}, 710 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 7.87(\mathrm{~s}, \mathrm{NH}) ; 7.7-7.55$ ($\mathrm{m}, 2$ arom. $\mathrm{H}, \mathrm{NH}) ; 7.4-7.1\left(m, 5\right.$ arom. H); 6.7-6.55 ($m, 2$ arom. H); $6.22\left(s, \mathrm{NH}_{2}\right) ; 3.26(s, \mathrm{MeN}) ; 1.44,1.36\left(2 s, 2 \mathrm{Me}_{2} \mathrm{C}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: 173.4,172.5,168.5(3 \mathrm{~s}, 3 \mathrm{C}=\mathrm{O}) ; 149.3,145.6(2 \mathrm{~s}, 2$ arom. C); 131.5, 128.7, 128.6, 127.2, 126.3, 116.1 ($6 d, 8$ arom. CH); $115.4\left(s, 1\right.$ arom. C); $114.5(d, 1$ arom. CH$) ; 56.5,56.3\left(2 s, 2 \mathrm{Me}_{2} C\right) ; 39.0(q, \mathrm{MeN}) ; 25.5$, 24.9 ($2 q, 2 M e_{2}$ C). CI-MS: $397\left(49,[M+1]^{+}\right.$), $304(15), 295(21), 291(17), 290(100)$.
6.6. 4,5-Dihydro-2,2,4,4-tetramethyl-1 H -imidazo [1,2-a] [1,4]benzodiazepine-1,6(2H)-dione (25) and 3,4,6,7-Tetrahydro-3,3,6,6-tetramethyl-1,4,7-benzotriazecine-2,5,8(1H)-trione (24). Through a well stirred soln. of 23 $(120 \mathrm{mg}, 0.30 \mathrm{mmol})$ in dry DMF ($38 \mathrm{ml}, c=0.008 \mathrm{~m}$), a stream of dry HCl gas was passed during 30 min at 60°,
followed by a stream of N_{2} for additional 2 h . The solvent was evaporated and the residue partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated; $34 \mathrm{mg}(42 \%)$ of 25 , which was recrystallized from MeOH .

25: Colorless prisms. M.p. $239.5-240.7^{\circ}$. IR: $3180 \mathrm{~m}, 3060 \mathrm{~m}, 2990 \mathrm{~m}, 2940 \mathrm{w}, 1745 \mathrm{~s}, 1660 \mathrm{~s}, 1640 \mathrm{~s}, 1600 \mathrm{~m}$, $1490 \mathrm{~m}, 1460 \mathrm{~s}, 1400 \mathrm{~m}, 1380 \mathrm{~m}, 1345 \mathrm{~m}, 1310 \mathrm{~m}, 1270 \mathrm{w}, 1200 \mathrm{~m}, 1160 \mathrm{~m}, 1130 \mathrm{w}, 1085 \mathrm{w}, 760 \mathrm{~m}, 740 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($65-75^{\circ}$; from the mixture with 24): $8.67(\mathrm{~s}, \mathrm{NH}) ; 7.8-7.75(\mathrm{~m}, 1$ arom. H); 7.65-7.6 ($\mathrm{m}, 2$ arom. H); 7.5-7.4 ($m, 1$ arom. H); 1.33, 1.28 ($2 \mathrm{~s}, 2 \mathrm{Me}_{2} \mathrm{C}$). Cl-MS: $272\left(100,[M+1]^{+}\right.$). El-MS: 271 (92, M^{+}), $243(15), 229(16)$, $228(100), 186(22), 146(18), 118(22), 117(53), 106(12), 90(17), 77(15)$.

24: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(100^{\circ}\right): 11.15(s, \mathrm{NH}) ; 8.26(d, J=8.1,1$ arom. H); $8.18(s, \mathrm{NH}) ; 7.94(d, J=7.2,1$ arom. H$)$; $7.65(s, \mathrm{NH}) ; 7.5-7.4\left(m, 1\right.$ arom. H); 7.15-7.05 ($m, 1$ arom. H); $1.39,1.35\left(2 s, 2 \mathrm{Me}_{2} \mathrm{C}\right)$.

Recrystallization from MeOH yielded crystals of 25 suitable for an X-ray crystal-structure determination.
7. Reactions with 3-Hydroxybenzoic Acid (16). 7.1. 2-(3-Hydroxybenzamido)-2,N-dimethyl-N-phenylpropanamide (27). Analogously to 1.1 , reaction of $\mathbf{2 6}(650 \mathrm{mg}, 4.71 \mathrm{mmol})$ with $\mathbf{7 a}(819 \mathrm{mg}, 47 \mathrm{mmol})$ led to 27: $1.353 \mathrm{~g}(92 \%)$. Colorless powder. M.p. $180.3-180.4^{\circ}$. IR : $3300 \mathrm{~s}, 3060 \mathrm{~m}, 3015 \mathrm{w}, 2940 \mathrm{w}, 1635 \mathrm{~s}, 1625 \mathrm{~s}, 1595 \mathrm{~s}, 1585 \mathrm{~s}$, $1580 \mathrm{~s}, 1495 \mathrm{~s}, 1485 \mathrm{~s}, 1455 \mathrm{~m}, 1430 \mathrm{w}, 1390 \mathrm{~s}, 1370 \mathrm{~m}, 1320 \mathrm{~s}, 1310 \mathrm{~s}, 1290 \mathrm{~m}, 1270 \mathrm{w}, 1240 \mathrm{~m}, 1210 \mathrm{~m}, 1170 \mathrm{w}, 1120 \mathrm{~m}$, $1095 w, 1075 w, 1025 w, 1000 w, 760 \mathrm{~m}, 710 \mathrm{~s}, 690 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 9.58(\mathrm{~s}, \mathrm{CH}) ; 8.04$ (br. $\left.s, \mathrm{NH}\right) ; 7.25-7.1$ ($m, 8$ arom. H); 6.9-6.85 ($m, 1$ arom. H); $3.15\left(s, \mathrm{MeN}\right.$); $1.45\left(s, \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 172.6,166.2(2 s, 2 \mathrm{C}=\mathrm{O}$); 157.2, 145.6, 136.0 ($3 s, 3$ arom. C); 129.1, 129.0, 127.4, 118.3, 114.7 ($5 d, 9$ arom. CH); $57.1\left(s, \mathrm{Me}_{2} \mathrm{C}\right) ; 39.7$ (q, MeN); 26.7 ($q, M e_{2} \mathrm{C}$). CI-MS: $313\left(100,[M+1]^{+}\right), 205(67)$.
7.2. 2-(Hydroxybenzamido)-2-methylpropanoic Acid (28). Hydrolysis of $27(976 \mathrm{mg}, 3.1 \mathrm{mmol}$) according to
 $1630 \mathrm{~s}, 1595 \mathrm{~s}, 1585 \mathrm{~s}, 1550 \mathrm{~s}, 1540 \mathrm{~s}, 1530 \mathrm{~s}, 1485 \mathrm{~s}, 1475 \mathrm{~s}$, $1460 \mathrm{~s}, 1410 \mathrm{~m}, 1385 \mathrm{~m}, 1310 \mathrm{~m}, 1250 \mathrm{~m}, 1210 \mathrm{~m}, 1180 \mathrm{~m}$, $1125 w, 1080 w, 1040 w, 1020 w, 1000 w, 755 m, 695 m, 625 m .{ }^{1} \mathrm{H}-\mathrm{NMR}: 8.29(s, \mathrm{NH}) ; 7.25-7.15(m, 3$ arom. H); 6.9-6.85 ($m, 1$ arom. H); $1.49\left(s, \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 178.5,165.4$ ($2 \mathrm{~s}, 2 \mathrm{C}=0$); 157.9, 137.1 ($2 \mathrm{~s}, 2$ arom. C); 129.6, 118.3, 117.6, 114.3 ($4 d, 4$ arom. CH); $56.9\left(s, \mathrm{Me}_{2} C\right) ; 24.8\left(q, M e_{2} \mathrm{C}\right) . \mathrm{CI}-\mathrm{MS}: 224\left(100,[M+1]^{+}\right)$.
7.3. 2-[2-(3-Hydroxybenzamido)-2-methylpropanamido]-2,N-dimethyl- N -phenylpropanamide (29). Reaction of $28(564 \mathrm{mg}, 2.52 \mathrm{mmol})$ with 7 a ($438 \mathrm{mg}, 2.5 \mathrm{mmol}$) according to 1.1 gave $860 \mathrm{mg}(86 \%)$ of 29 . Colorless powder. M.p. $197.6-198^{\circ}$. IR: $3350 \mathrm{~s}, 3190 \mathrm{~s}, 3060 \mathrm{~m}, 3020 \mathrm{~m}, 2990 \mathrm{~m}, 2940 \mathrm{~m}, 1660 \mathrm{~s}, 1630 \mathrm{~s}, 1590 \mathrm{~s}, 1575 \mathrm{~s}, 1530 \mathrm{~s}$, $1495 s, 1480 \mathrm{~s}, 1440 \mathrm{~s}, 1390 \mathrm{~s}, 1370 \mathrm{~s}, 1320 \mathrm{~s}, 1280 \mathrm{~m}, 1240 \mathrm{~s}, 1220 \mathrm{~s}, 1205 \mathrm{~s}, 1180 \mathrm{~s}, 1125 \mathrm{~m}, 1090 \mathrm{~s}, 1025 \mathrm{w}, 1000 \mathrm{~m}, 865 \mathrm{~m}$, $820 \mathrm{~m}, 770 \mathrm{~s}, 710 \mathrm{~s}, 695 \mathrm{~s}, 620 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 9.63(\mathrm{~s}, \mathrm{OH}) ; 8.00,7.71(2 \mathrm{~s}, 2 \mathrm{NH}) ; 7.4-7.2(\mathrm{~m}, 8$ arom. H$) ; 6.96-6.9$ ($m, 1$ arom. H); $3.24(s, \mathrm{MeN}) ; 1.45,1.35\left(2 \mathrm{~s}, 2 \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 173.3,172.5,166.0(3 \mathrm{~s}, 3 \mathrm{C}=\mathrm{O}) ; \mathbf{1 5 7 . 2}, 145.6$, 136.4 ($3 \mathrm{~s}, 3$ arom. C); 129.1, 128.7, 127.3, 126.4, 118.0, 117.9, 114.3 ($7 d, 9$ arom. CH); 56.7, 56.6 ($2 \mathrm{~s}, 2 \mathrm{Me}_{2} \mathrm{C}$); $40.0(q, \mathrm{MeN})$; 25.6, $24.8\left(2 q, 2 \mathrm{Me}_{2} \mathrm{C}\right)$. CI-MS: $398\left(100,[M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$ (397.47): C 66.48, H 6.85, N 10.57; found: C 66.68, H 7.05, N 10.49 .
7.4. 2-[2-(3-Hydroxybenzamido)-3-methylpropanamido]-2-methylpropanoic Acid (31). Hydrolysis of 29 ($300 \mathrm{mg}, 0.75 \mathrm{mmol}$) according to 2.1 yielded $219 \mathrm{mg}(95 \%)$ of 31 . Colorless plates. M.p. $184-185^{\circ}$. IR: 3280 s , $3060 \mathrm{~m}, 2990 \mathrm{~s}, 2940 \mathrm{~m}, 1740 \mathrm{~s}, 1665 \mathrm{~s}, 1640 \mathrm{~s}, 1570 \mathrm{~s}, 1550 \mathrm{~s}, 1530 \mathrm{~s}, 1495 \mathrm{~s}, 1485 \mathrm{~m}, 1460 \mathrm{~m}, 1390 \mathrm{~s}, 1365 \mathrm{~m}, 1315 \mathrm{~s}, 1255 \mathrm{~m}$, $1230 \mathrm{~s}, 1170 \mathrm{~m}, 1150 \mathrm{~m}, 1085 \mathrm{w}, 1020 \mathrm{w}, 1000 \mathrm{w}, 760 \mathrm{~m}, 690 \mathrm{~m}, 650 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 12.20$ (br. $\left.s, \mathrm{COOH}\right) ; 9.62(\mathrm{~s}, \mathrm{OH})$; 8.12, $7.58(2 s, 2 \mathrm{NH}) ; 7.25-7.15(m, 3$ arom. H$) ; 6.95-6.85(m, 1$ arom. H$) ; 1.44,1.34\left(2 s, 2 \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: 175.8, 173.4, 166.0 ($3 \mathrm{~s}, 3 \mathrm{C}=\mathrm{O}$); 157.2, 136.3 ($2 \mathrm{~s}, 2$ arom. C); 129.2, 118.0, 117.9, 114.2 ($4 d, 4$ arom. CH); 56.4, 55.2 ($2 \mathrm{~s}, 2 \mathrm{Me}_{2} \mathrm{C}$); 24.7, 24.5 ($2 q, 2 \mathrm{Me}_{2} \mathrm{C}$). CI-MS: 309 ($100,[M+1]^{+}$), 224 (28), 206(62), 104(36).
7.5. 2-\{2-[2-(3-Hydroxybenzamido)-2-methylpropanamido]-2-methylpropanamido\}-2, N -dimethyl- N -phenylpropanamide (32). Reaction of $31(150 \mathrm{mg}, 0.48 \mathrm{mmol})$ with 7 a $(83 \mathrm{mg}, 0.48 \mathrm{mmol})$ according to 1.1 gave 220 mg (95%) of 32. Colorless powder. M.p. $241-242^{\circ}$. IR: $3420 \mathrm{~s}, 3250 \mathrm{~s}, 3060 \mathrm{~m}, 2990 \mathrm{~m}, 2940 \mathrm{~m}, 1690 \mathrm{~s}, 1640 \mathrm{~s}, 1585 \mathrm{~s}$, $1550 s, 1535 s, 1495 s, 1465 s, 1395 s, 1370 s, 1330 s, 1265 m, 1240 \mathrm{~m}, 1225 \mathrm{~s}, 1210 \mathrm{~s}, 1175 \mathrm{~m}, 1165 \mathrm{~m}, 1125 \mathrm{~s}, 1115 \mathrm{~s}, 1095 \mathrm{~s}$, $1070 w, 1020 w, 1000 w, 770 m, 745 m, 710 \mathrm{~s}, 620 \mathrm{~m} .{ }^{4} \mathrm{H}-\mathrm{NMR}: 9.68$ (br. $\left.s, \mathrm{OH}\right) ; 8.38(\mathrm{~s}, \mathrm{NH}) ; 7.6-7.55(\mathrm{~m}, 1$ arom. H , $\mathrm{NH}) ; 7.4-7.15(m, 7$ arom. $\mathrm{H}, \mathrm{NH}) ; 6.95-6.9(m, 1$ arom. H$) ; 3.25(s, \mathrm{MeN}) ; 1.44,1.40,1.30\left(3 \mathrm{~s}, 3 \mathrm{Me}_{2} \mathrm{C}\right)$. ${ }^{13} \mathrm{C}$-NMR; 173.9, $172.9,172.6,166.9$ ($4 \mathrm{~s}, 4 \mathrm{C}=\mathrm{O}$); 157.2, 146.0, 135.7 ($3 \mathrm{~s}, 3$ arom. C); 129.1, 128.6, 126.8, 125.9, 118.3, 118.1, 114.5 ($7 d, 9$ arom. CH); 56.5, 56.3, $56.0\left(3 s, 3 \mathrm{Me}_{2} C\right) ; 39.9(q, \mathrm{MeN}) ; 25.7,25.1,24.7$ (3q, $3 \mathrm{Me}_{2} \mathrm{C}$). CI-MS: $376\left(100,[M-\mathrm{Ph}(\mathrm{Me}) \mathrm{N}]^{+}\right), 291(21), 108(93), 58(19)$. Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{5}$ (482.57): C 64.71, H 7.10, N 11.61; found: C 64.61, H 6.96, N 11.62.
7.6. Attempted Cyclization of 32. Analogously to 4.1 , a soln. of $32(125 \mathrm{mg}, 0.25 \mathrm{mmol})$ in DMF (32 ml , $c=0.008 \mathrm{M})$ was treated with HCl gas. After the usual workup, $2-\{2-[2-(3-$ hydroxybenzamido $)-2-$ methyl-propanamido/-2-methylpropanamido\}-2-methylpropanoic acid (34) was isolated: $85 \mathrm{mg}(87 \%)$. Colorless powder. M.p. $155-157^{\circ}$. IR: $3340 \mathrm{~s}, 2990 \mathrm{~s}, 2940 \mathrm{~m}, 1715 \mathrm{~s}, 1650 \mathrm{~s}, 1595 \mathrm{~s}, 1540 \mathrm{~s}, 1450 \mathrm{~s}, 1390 \mathrm{~m}, 1370 \mathrm{~m}, 1305 \mathrm{~s}, 1260 \mathrm{~m}, 1230 \mathrm{~s}$, $1195 m, 1180 \mathrm{~m}, 1075 \mathrm{w}, 1030 \mathrm{~m}, 1000 \mathrm{w}, 760 \mathrm{~m}, 69 \mathrm{~m}, 610 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 9.77$ (br. $\left.s, \mathrm{OH}\right) ; 8.33,7.59,7.52(3 \mathrm{~s}, 3 \mathrm{NH})$;
$7.35-7.25\left(m, 3\right.$ arom. H); $6.95\left(d, J=7.8,1\right.$ arom. H); 1.39, 1.36, $1.26\left(3 s, 3 \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 175.8,173.4$, 173.2, $166.8(4 s, 4 \mathrm{C}=\mathrm{O}$); 157.3, 135.7 ($2 \mathrm{~s}, 2$ arom. C); 129.0, 118.3, 118.1, 114.6 ($4 d, 4$ arom. CH); 56.5, 55.7, 54.9 ($3 \mathrm{~s}, 3 \mathrm{Me}_{2} \mathrm{C}$); 24.9, 24.7, 24.6 ($3 t, 3 \mathrm{Me}_{2} \mathrm{C}$). CI-MS: $394\left(100,[M+1]^{+}\right.$).

Recrystallization of 34 from MeOH yielded crystals suitable for an X-ray crystal-structure determination.
8. Tripeptide Derivatives of Type 36 and 37 . Reaction of 1 mmol of $\mathbf{1 0}$ or $\mathbf{2 2}$ with 5 ml of $3 \mathrm{~N} \mathrm{HCl}\left(\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\right.$ 1:1) and workup according to 2.1 led to the corresponding carboxylic acids 36 and 37 , resp., in almost quantitative yields.
8.1. 2-[2-(2-Hydroxybenzamido)-2-methylpropanamido]-2-methylpropanoic Acid ($\mathbf{3 6 a}$): Colorless microcrystals. M.p. $195-196.3^{\circ}$. IR : $3350 \mathrm{~m}, 3320 \mathrm{~m}, 3060 \mathrm{~m}, \mathbf{3 0 4 0 m}, 2990 \mathrm{~m}, 1710 \mathrm{~s}, 1650 \mathrm{~s}, 1630 \mathrm{~s}, 1605 \mathrm{~s}, 1550 \mathrm{~s}, 1500 \mathrm{w}, 1460 \mathrm{~m}$, $1440 w, 1420 w, 1385 m, 1320 m, 1285 w, 1250 w, 1225 w, 1185 w, 1095 m, 1040 m, 1020 w, 940 s, 890 s, 870 m, 785 m, 755 s$, $615 s{ }^{1} \mathrm{H}-\mathrm{NMR}: 12.14(\mathrm{~s}, \mathrm{COOH}) ; 11.82(\mathrm{~s}, \mathrm{OH}) ; 8.81(\mathrm{~s}, \mathrm{NH}) ; 7.9-7.85(\mathrm{~m}, 1$ arom. H); $7.71(\mathrm{~s}, \mathrm{NH}) ; 7.4-$ $7.3\left(m, 1\right.$ arom. H); 6.9-6.85 ($m, 2$ arom. H); 1.50, $1.34\left(2 s, 2 \mathrm{Me}_{2} \mathrm{C}\right.$). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 175.6,173.1,166.9(3 \mathrm{~s}, 3 \mathrm{C}=\mathrm{O})$; 158.4 ($s, 1$ arom. C); 133.1, 129.1, 118.6, $117.6(4 d, 4$ arom. CH$) ; 116.9\left(s, 1\right.$ arom. C); 56.6, $55.2\left(2 s, 2 \mathrm{Me}_{2} C\right)$; 29.7, $29.6\left(2 q, 2 M e_{2}\right.$ C). CI-MS: $309\left(100,[M+1]^{+}\right)$.
8.2. 1-[1-(2-Hydroxybenzamido) cyclopentanecarboxamido]cyclopentanecarboxylic Acid ($\mathbf{3 6} \mathbf{b}$): Colorless microcrystals. M.p. $218-219^{\circ}$. IR: $3400 \mathrm{~s}, 3340 \mathrm{~s}, 2960 \mathrm{~m}, 2880 \mathrm{~m}, 1700 \mathrm{~s}, 1655 \mathrm{~s}, 1640 \mathrm{~s}, 1600 \mathrm{~s}, 1530 \mathrm{~s}, 1515 \mathrm{~s}, 1490 \mathrm{~s}$, $1470 \mathrm{w}, 1450 \mathrm{~s}, 1410 \mathrm{w}, 1370 \mathrm{~s}, 1340 \mathrm{~s}, 1305 \mathrm{~s}, 1260 \mathrm{~m}, 1230 \mathrm{~s}, 1210 \mathrm{~m}, 1170 \mathrm{w}, 1150 \mathrm{w}, 1120 \mathrm{w}, 1040 \mathrm{w}, 790 \mathrm{~m}, 760 \mathrm{~s}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 11.90(s, \mathrm{COOH}) ; 8.49(s, \mathrm{NH}) ; 7.87(d d, J=6.6,1.3,1$ arom. H); $7.65(s, \mathrm{NH}) ; 7.4-7.3(m, 1$ arom. H); 6.9-6.85 ($m, 2$ arom. H); 2.25-2.1 ($m, 2 \mathrm{H}$); 1.95-1.8 ($m, 6 \mathrm{H}$); 1.65-1.45 ($m, 8 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 175.7,172.9$, 168.6 ($3 s, 3 \mathrm{C}=\mathrm{O}$); 159.3 ($s, 1$ arom. C); 133.5, 129.1, 118.7, 117.1 ($4 d, 4$ arom. CH); 117.0 ($s, 1$ arom. C); 66.6, $65.2(2 s, 2 \mathrm{C}(\alpha)) ; 36.2,36.1,24.5,24.0\left(4 t, 8 \mathrm{CH}_{2}\right)$. EI-MS: $360\left(9, M^{+}\right), 231(25), 205(17), 204(68), 203(20)$, 121 (62), 85(15), 84(100), 83(24), $67(12), 65(13)$.
8.3. 2-\{2-\{2-\{/(Benzyloxy) carbonyl]amino\}benzamido $\}-2$-methylpropanamido $\}-2-m e t h y l p r o p a n o i c ~ A c i d ~(37) . ~$ Colorless powder. M.p. $150.2-151^{\circ}$. IR: 3350 s (br.), 3300 s (br.), $3040 \mathrm{w}, 2980 \mathrm{w}, 2940 \mathrm{w}, 1730 \mathrm{~s}, 1710 \mathrm{~s}, 1660 \mathrm{~s}, 1590 \mathrm{~s}$, $1540 s, 1515 s, 1450 s, 1400 w, 1380 w, 1365 w, 1305 m, 1280 \mathrm{~m}, 1240 \mathrm{~m}, 1215 \mathrm{~s}, 1185 \mathrm{w}, 1170 \mathrm{w}, 1100 \mathrm{w}, 1045 \mathrm{~m}, 1030 \mathrm{w}$, $760 \mathrm{~m}, 695 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 12.20$ (br. s, COOH); 10.37, 8.44 ($2 \mathrm{~s}, 2 \mathrm{NH}$); $8.09(d, J=8,1$ arom. H); 7.76 ($d, J=8$, 1 arom. H); $7.58(\mathrm{~s}, \mathrm{NH}) ; 7.55-7.3(\mathrm{~m}, 6$ arom. H); 7.15-7.1 ($\mathrm{m}, 1$ arom. H); 5.13 ($\mathrm{s}, \mathrm{PhCH}$) ; 1.41, 1.28 ($2 \mathrm{~s}, 2 \mathrm{Me}_{2} \mathrm{C}$). ${ }^{13} \mathrm{C}$-NMR: $175.8,172.8,167.9,152.8(4 s, 4 \mathrm{C}=\mathrm{O}) ; 138.3,136.4$ ($2 \mathrm{~s}, 2$ arom. C); 131.8, 128.6, 128.4, 128.0, 127.9, 121.9 ($6 d, 8$ arom. CH); $121.6\left(s, 1\right.$ arom. C); $119.0(d, 1$ arom. CH$) ; 66.0\left(t, \mathrm{PhCH}_{2}\right) ; 56.6,55.0$ ($2 s, 2 \mathrm{Me}_{2} \mathrm{C}$); 24.7, 24.4 ($2 q, 2 \mathrm{Me}_{2} \mathrm{C}$). CI-MS: 424 ($9,\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$), $339(100)$, 104(26).
9. Tetrapeptide Derivatives of Type 38 and 39. 9.1. General Procedure. To well stirred suspensions of 36 and 37 in 4 ml of dry MeCN and i-PrOH, resp., a soln. of 1 mmol of the corresponding 2 H -azirin- 3 -amine 7 in 1 ml of MeCN or $\mathrm{i}-\mathrm{PrOH}$ was added at r.t. The mixture was stirred overnight, and the formed solid was collected by filtration, washed with hexane, and dried under h.v.
9.2. $2-\{2-[2-(2-H y d r o x y b e n z a m i d o)-2-m e t h y l p r o p a n a m i d o l-2-m e t h y l p r o p a n a m i d o\}-2, \mathrm{~N}-$ dimethyl- $\mathrm{N}-$ phenylpropanamide ($\mathbf{3 8}$ a). Yield $428 \mathrm{mg}\left(89 \%\right.$). Colorless powder. M.p. 224° (dec.). IR: 3340s, $3310 \mathrm{~s}, 3060 \mathrm{w}, 2980 \mathrm{~m}$, $2930 \mathrm{~m}, 1680 \mathrm{~s}, 1660 \mathrm{~s}, 1630 \mathrm{~s}, 1595 \mathrm{~s}, 1530 \mathrm{~s}, 1500 \mathrm{~s}, 1495 \mathrm{~s}$, $1470 \mathrm{~s}, 1440 \mathrm{~m}, 1415 \mathrm{w}, 1390 \mathrm{~s}, 1365 \mathrm{~s}, 1340 \mathrm{~s}, 1305 \mathrm{~s}, 1260 \mathrm{~s}$, 1230s, 1210s, 1170s, $1140 w, 1110 w, 1090 w, 1040 w, 1025 w, 1000 w, 780 \mathrm{~m}, 750 s, 710 s .{ }^{1} \mathrm{H}-\mathrm{NMR}: 11.64$ (br. s, OH); $8.74(\mathrm{~s}, \mathrm{NH}) ; 7.9-7.85(\mathrm{~m}, 1$ arom. H$) ; 7.62(\mathrm{~s}, \mathrm{NH}) ; 7.45-7.3(\mathrm{~m}, 4 \operatorname{arom} . \mathrm{H}) ; 7.2-7.15(\mathrm{~m}, 2 \operatorname{arom} . \mathrm{H}, \mathrm{NH})$; $6.95-6.9\left(m, 2\right.$ arom. H); $3.23(s, \mathrm{MeN}) ; 1.44,1.41,1.30\left(3 s, 3 \mathrm{Me}_{2} \mathrm{C}\right)$. CI-MS: $483\left(21,[M+1]^{+}\right), 376(100)$.
9.3. 1-\{1-(1-(2-Hydroxybenzamido)cyclopentanecarboxamido/cyclopentanecarboxamido\}-N-methyl-N-phenylcyclopentanecarboxamide ($\mathbf{3 8} \mathbf{b}$). Yield $537 \mathrm{mg}(96 \%)$. Colorless powder. M.p. 285-285.3 ${ }^{\circ}$. IR: 3340s, 3070 w , $2960 \mathrm{~m}, 2880 \mathrm{~m}, 1680 \mathrm{~s}, 1645 \mathrm{~s}, 1600 \mathrm{~s}, 1545 \mathrm{~s}, 1540 \mathrm{~s}, 1525 \mathrm{~s}, 1500 \mathrm{~s}, 1445 \mathrm{~m}, 1375 \mathrm{~m}, 1340 \mathrm{~m}, 1330 \mathrm{~m}, 1310 \mathrm{~m}, 1260 \mathrm{~m}$, $1235 m, 1210 \mathrm{~m}, 1175 w, 1145 w, 1125 w, 1040 w, 1030 w, 775 m, 705 m, 610 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 8.91$ (br. $\left.s, \mathrm{NH}\right) ; 7.82$ (d, $J=7.1,1$ arom. H); 7.65-7.05 ($m, 6$ arom. H, 2 NH); $7.0-6.85(\mathrm{~m}, 2$ arom. H); $3.20(\mathrm{~s}, \mathrm{MeN}) ; 2.25-1.8$ $(m, 12 \mathrm{H}) ; 1.65-1.55(m, 12 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\left(\mathrm{D}_{6}\right) \mathrm{DMSO} / \mathrm{CF}_{3} \mathrm{COOH}\right): 176.0,174.2,173.6,169.1(4 \mathrm{~s}, 4 \mathrm{C}=\mathrm{O})$; $158.8,138.2(2 s, 2$ arom. C); 133.9, 130.6, 130.5, 129.6, 122.8, 119.4, 117.5 (7 d, 9 arom. CH); 112.9 ($s, 1$ arom. C); $67.3,66.6,65.7(3 s, 3 \mathrm{C}(\alpha)) ; 39.8(q, \mathrm{MeN}) ; 39.7,37.0,36.0,25.0,24.8,24.5\left(6 t, 12 \mathrm{CH}_{2}\right) . \mathrm{CI}-\mathrm{MS}: 454$ (83, $[M-\mathrm{Ph}(\mathrm{Me}) \mathrm{N}]^{+}$), 453(15), 343(42), $319(2), 138(43), 108(100), 107(44)$.
9.4. $2-\{2-\{2-\{2-\{/($ Benzyloxy $)$ carbonyl $\}$ amino $\}$ benzamido $\}-2-$ methylpropanamido $\}-2-$ methylpropanamido $\}$ -2,N-dimethyl-N-phenylpropanamide (39 a). Yield $565 \mathrm{mg}\left(92 \%\right.$). Colorless powder. M.p. 237.3-238.7 ${ }^{\circ}$. IR: 3320s, $3270 \mathrm{~m}, 3060 \mathrm{w}, 3030 \mathrm{w}, 2990 \mathrm{w}, 2940 \mathrm{w}, 1740 \mathrm{~s}, 1660 \mathrm{~s}, 1630 \mathrm{~s}, 1595 \mathrm{~s}, 1545 \mathrm{~m}, 1525 \mathrm{~s}$, $1515 \mathrm{~s}, 1495 \mathrm{~s}$, 1450 s , 1390 m , $1360 \mathrm{~m}, 1330 \mathrm{~m}, 1300 \mathrm{~m}, 1280 \mathrm{~m}, 1210 \mathrm{~s}, 1170 \mathrm{~m}, 1090 \mathrm{~m}, 1040 \mathrm{~m}, 1000 \mathrm{w}, 760 \mathrm{~m}, 705 \mathrm{~m} .{ }^{1} \mathrm{H}$-NMR: $10.36,8.73$ $(2 s, 2 \mathrm{NH}) ; 8.11(d, J=7.5,1$ arom. H); $7.85(d, J=6.5,1.4,1$ arom. H); $7.70(s, \mathrm{NH}) ; 7.55-7.5(m, 1$ arom. H); 7.4-7.25 (m, 7 arom. H, NH); 7.15-7.05 ($m, 4$ arom. H); $5.13\left(s, \mathrm{PhCH}_{2}\right) ; 3.14(s, \mathrm{MeN}) ; 1.40,1.30,1.29(3 s, 3$ $\mathrm{Me}_{2} \mathrm{C}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 176.4,175.3,171.0,154.8$ ($4 \mathrm{~s}, 5 \mathrm{C}=\mathrm{O}$); 146.5, 140.3, 137.5 ($3 \mathrm{~s}, 3$ arom. C); 133.6,
130.1, 129.9, 129.6, 129.5, 129.4, 128.2, 128.0, 123.4 (9 d, 13 arom. CH); 121.6 ($s, 1$ arom. C); 120.5 ($d, 1$ arom. $\mathrm{CH}) ; 67.9\left(t, \mathrm{PhCH}_{2}\right) ; 58.5,58.4,58.0\left(3 s, 3 \mathrm{Me}_{2} \mathrm{C}\right) ; 41.0(q, \mathrm{MeN}) ; 26.5,25.6,25.2\left(3 q, 3 \mathrm{Me}_{2} \mathrm{C}\right)$. Cl-MS: $509(40$, $\left.[M-\mathrm{Ph}(\mathrm{Me}) \mathrm{N}]^{+}\right), 403(18), 402(100), 279(14)$.
9.5. 2-\{2-[2-(2-Aminobenzamido)-2-methylpropanamido]-2-methylpropanamido $\}-2, \mathrm{~N}$-dimethyl- N -phenylpropanamide ($\mathbf{3 9} \mathrm{b}$). Reaction of $420 \mathrm{mg}(0.68 \mathrm{mmol})$ of $\mathbf{3 9 a}$ with $\mathrm{H}_{2}(\mathrm{Pd} / \mathrm{C})$ according to 5.2 led to $289 \mathrm{mg}(88 \%)$ of $\mathbf{3 9 b}$. Colorless microcrystals. M.p. $247-248^{\circ}$. IR: $3430 s, 3340 \mathrm{~m}, 3270 \mathrm{~s}, 3040 \mathrm{w}, 2990 \mathrm{~m}, 2940 \mathrm{w}, 1680 \mathrm{~s}, 1665 \mathrm{~s}$, $1630 \mathrm{~s}, 1590 \mathrm{~s}, 1570 \mathrm{~m}, 1540 \mathrm{~s}, 1490 \mathrm{~s}, 1465 \mathrm{~m}, 1450 \mathrm{~m}, 1440 \mathrm{~m}, 1395 \mathrm{~m}, 1380 \mathrm{~m}, 1360 \mathrm{~m}, 1310 \mathrm{~m}, 1265 \mathrm{~m}, 1220 \mathrm{~m}, 1170 \mathrm{~m}$, $1090 \mathrm{~m}, 1070 \mathrm{w}, 1040 \mathrm{w}, 1020 \mathrm{w}, 755 \mathrm{~m}, 710 \mathrm{~m}, 665 \mathrm{~m}, 615 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 8.20(\mathrm{~s}, \mathrm{NH}) ; 7.65(d, J=6.9,1$ arom. H); $7.59,7.53(2 s, 2 \mathrm{NH}) ; 7.35-7.15(m, 6$ arom. H$) ; 6.70(d, J=7.9,1$ arom. H); 6.6-6.55 ($\mathrm{m}, 1$ arom. H); 6.27 $\left(s, \mathrm{NH}_{2}\right) ; 3.23(s, \mathrm{MeN}) ; 1.40,1.30\left(2 s, 3 \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 174.0,173.1,172.5,169.4(4 s, 4 \mathrm{C}=\mathrm{O}) ; 149.4$, 145.9 ($2 s, 2$ arom. C); 131.9, 129.1, 128.6, 126.9, 126.0, 116.2 ($6 d, 8$ arom. CH); 115.1 ($s, 1$ arom. C); 114.7 $(d, 1$ arom. CH$) ; 56.3,56.0\left(2 s, 3 \mathrm{Me}_{2} \mathrm{C}\right) ; 38.2(q, \mathrm{MeN}) ; 25.7,24.9,24.8\left(3 q, 3 \mathrm{Me}_{2} \mathrm{C}\right) . \mathrm{CI}-\mathrm{MS}: 482\left(15,[M+1]^{+}\right)$, $375(100)$.
10. Attempted Cyclization of 38 . Analogously to $4.1,38(0.25 \mathrm{mmol})$ in DMF ($32 \mathrm{ml}, c=0.008 \mathrm{~m}$) was reacted with dry HCl gas. Only the hydrolyzed products of type 40 were obtained.
10.1. 2-\{2-[2-(2-Hydroxybenzamido)-2-methylpropanamido]-2-methylpropanamido\}-2-methylpropanoic Acid (40a): Yield $81 \mathrm{mg}\left(87 \%\right.$). Colorless powder. M.p. $237-238.5^{\circ}$. IR: 3340 s (br.), 2980m, 2940m, 1730s, 1640 s , $1600 \mathrm{~s}, 1550 \mathrm{~s}, 1530 \mathrm{~s}, 1455 \mathrm{~m}, 1390 \mathrm{~m}, 1370 \mathrm{~m}, 1310 \mathrm{~m}, 1230 \mathrm{~s}, 1170 \mathrm{~m}, 1095 \mathrm{w}, 1040 \mathrm{w}, 760 \mathrm{~m}, 705 \mathrm{w} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 11.86$ (br. $s, \mathrm{COOH}) ; 8.78(\mathrm{~s}, \mathrm{NH}) ; 7.9-7.85(\mathrm{~m}, 1$ arom. H); $7.69(s, \mathrm{NH}) ; 7.4-7.35(\mathrm{~m}, 1$ arom. H, NH); 6.95-6.9 ($m, 2$ arom. H); 1.44, 1.36, $1.28\left(3 s, 3 \mathrm{Me}_{2} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: 175.6, 173.4, 172.8, 167.4 ($4 s, 4 \mathrm{C}=\mathrm{O}$); 158.4 ($s, 1$ arom. C); 133.3, 129.3, 118.7, 117.2 ($4 d, 4$ arom. CH); 117.0 ($s, 1$ arom. C); 56.5, $55.8,54.8$ ($3 \mathrm{~s}, 3 \mathrm{Me}_{2} \mathrm{C}$); 24.9, 24.8, $24.6\left(3 q, 3 \mathrm{Me}_{2} \mathrm{C}\right)$. CI-MS: 376 (100, $\left.[M+1]^{+}\right)$.
10.2. 1-\{1-[1-(2-Hydroxybenzamido) cyclopentanecarboxamido]cyclopentanecarboxamido\}cyclopentanecarboxylic Acid (40 b): Yield $99 \mathrm{mg}(84 \%)$. Colorless powder. M.p. $263.4-264.1^{\circ}$. IR: 3380s, $3340 s, 2970 \mathrm{~m}, 2880 \mathrm{~m}$, $1730 \mathrm{~s}, 1685 \mathrm{~s}, 1640 \mathrm{~s}, 1600 \mathrm{~s}, 1590 \mathrm{~s}, 1550 \mathrm{~s}, 1540 \mathrm{~s}, 1520 \mathrm{~s}, 1500 \mathrm{~s}, 1445 \mathrm{~m}, 1370 \mathrm{~m}, 1345 \mathrm{~m}, 1315 \mathrm{~m}, 1220 \mathrm{~m}, 1205 \mathrm{~m}$, $1160 w, 1115 w, 1050 w, 760 \mathrm{~m}, 610 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}: 8.77(s, \mathrm{NH}) ; 7.89(d, J=8.4,1$ arom. H); $7.70(\mathrm{~s}, \mathrm{NH}) ; 7.45-$ $7.35\left(m, 1\right.$ arom. H, NH); 6.95-6.9 ($m, 2$ arom. H); 2.25-1.5 ($m, 12 \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}: 175.5,173.0,172.9$, 168.3 ($4 s, 4 \mathrm{C}=\mathrm{O}$); 158.2 ($s, 1$ arom. C); 133.4, 129.6, 119.0 ($3 \mathrm{~d}, 3$ arom. CH); 117.9 ($s, 1$ arom. C); 117.1 (d, 1 arom. CH$)$; $66.7,66.0,65.1(3 s, 3 C(\alpha)) ; 36.6,36.3,24.6,24.4,24.1\left(5 t, 12 \mathrm{CH}_{2}\right)$. CI-MS: $472\left(54,[M+1]^{+}\right)$, $455(12), 454(40), 343(47), 337(52), 319(13), 232(34), 231(11), 226(13), 208(34), 204(26), 180(18), 138(100)$, 137(17), 130(29).
11. X-Ray Crystal-Structure Determination of Compounds 25 and $\mathbf{3 4}^{\mathbf{3}}$). For 25, all measurements were made on a Nicolet-R3 diffractometer, while for 34, a Rigaku-AF5CR diffractometer fitted to a $12-\mathrm{kW}$ rotating anode generator was employed. Mo K_{α} radiation ($\lambda=0.71069 \AA$) was used in both cases. The intensities were corrected for Lorentz and polarization effects but not for absorption. The structures were solved by direct methods using SHELXS86 [32] which revealed the positions of all non-H-atoms. The non-H-atoms were refined anisotropically. For 25, all H-atoms were located in a difference electron density map, and their positions were allowed to refine together with individual isotropic displacement parameters. For 34, all H -atoms were initially located in a difference electron density map, but the positions of the Me and Ph H -atoms were subsequently fixed in geometrically idealized positions with a $\mathrm{C}-\mathrm{H}$ distance of $0.95 \AA$, the orientations of the Me groups being based on the difference map positions. The positions of the remaining H -atoms (NH and OH) were allowed to refine, and individual isotropic displacement parameters were refined for all H -atoms. All refinements were carried out on F using full-matrix least-squares procedures which minimized the function $\sum w\left(\left|F_{o}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$, where $1 / w=\left[\sigma^{2}\left(F_{0}\right)+\left(p F_{0}\right)^{2}\right]$. Data collection and refinement parameters are listed in Table 3, and views of the molecules are shown in Figs. 1 and 2. Neutral-atom scattering factors for non-H-atoms were taken from [33a] and the scattering factors for H -atoms from [34]. Anomalous dispersion effects were included in $F_{\text {calc }}$ [35]; the values of f^{\prime} and $f^{\prime \prime}$ were those of [33 b]. All calculations were performed using the TEXSAN [36] crystallographic software package.

For 25, intermolecular H-bonds between $\mathrm{N}(1)-\mathrm{H}$ and $\mathrm{O}\left(1^{\prime}\right)(d(\mathrm{~N} \cdots \mathrm{O})=2.915(2), d(\mathrm{H} \cdots \mathrm{O})=2.03(2) \AA$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle $\left.=175(2)^{\circ}\right)$ link the molecules into centrosymmetric dimers. The crystal lattice of 34 contains

[^2]Table 3. Crystallographic Data for Compounds 25 and 34

	25	34
Crystallized from	MeOH	MeOH
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$	$\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot \mathrm{CH}_{3} \mathrm{OH}$
Formula weight	271.32	425.48
Crystal color, habit	colorless, prism	colorless, plate
Temp. [K]	295(1)	173(1)
Crystal dimensions [mm]	$0.21 \times 0.28 \times 0.55$	$0.15 \times 0.40 \times 0.50$
Crystal system	triclinic	monoclinic
Lattice parameters:		
Reflections for unit cell determination	25	18
2θ range [${ }^{\circ}$]	28-32	35-39
$a\left[\AA{ }^{\text {a }}\right.$]	5.8265(6)	18.689 (3)
$b[\AA]$	8.663 (1)	9.479 (3)
$c[\AA]$	13.718(2)	13.472 (2)
$\alpha\left[{ }^{\circ}\right]$	94.38 (1)	90
$\beta\left[{ }^{\circ}\right]$	94.22(1)	105.67 (1)
$\gamma\left[{ }^{\circ}\right]$	89.82(1)	90
$V\left[\AA^{3}\right]$	688.5(2)	2298.0 (8)
Space group	$P \overline{1}$	Cc
2	2	4
$D_{\mathrm{x}}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.309	1.230
Absorp. coefficient $\mu\left(\mathrm{Mo} K_{\alpha}\right)\left[\mathrm{mm}^{-1}\right]$	0.0891	0.0931
Scan type	Wyckoff ω	ω-2 θ
$2 \theta_{\text {max }}\left[{ }^{\circ}\right]$	55	60
Total reflections measured	3492	3632
Symmetry-independent reflections	3178	3441
Reflections observed ($I>2 \sigma(I)$)	2444	2907
Variables	250	318
R	0.0443	0.0454
R_{w}	0.0487	0.0449
Goodness of fit s	2.367	2.158
Weighting scheme	0.01	0.0075
p for $w=\left[\sigma^{2}\left(F_{o}\right)+\left(p F_{o}\right)^{2}\right]^{-1}$		
Final $\Delta_{\text {max }} / \sigma$	0.0003	0.002
$\Delta \rho_{(\text {max; min) }}\left[\mathrm{e} \AA^{-3}\right]$	0.24, -0.24	0.44, -0.27

one molecule of MeOH for every molecule of 34 . The peptide and the solvent molecules are linked into an infinite 3-dimensional network by a complex pattern of intermolecular H-bonds (Fig. 3). There are two weak intramolecular H -bonds between $\mathrm{N}(3)-\mathrm{H}$ and $\mathrm{O}(1)(d(\mathrm{~N} \cdots \mathrm{O})=3.070(3), d(\mathrm{H} \cdots \mathrm{O})=2.40(3) \AA, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle $\left.=143(3)^{\circ}\right)$, and $\mathrm{N}(3)-\mathrm{H}$ and $\mathrm{N}(2)\left(d(\mathrm{~N} \cdots \mathrm{~N})=2.762(4), d(\mathrm{H} \cdots \mathrm{N})=2.35(3) \AA, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}\right.$ angle $\left.=113(3)^{\circ}\right)$ thus forming the β-turn-like conformation of the peptide backbone. Intermolecular H -bonds exist between $\mathrm{N}(1)-\mathrm{H}$ and $\mathrm{O}\left(4^{\prime}\right)$ of a neighboring peptide molecule $(d(\mathrm{~N} \cdots \mathrm{O})=2.974(3), d(\mathrm{H} \cdots \mathrm{O})=2.20(3) \AA, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle $\left.=163(3)^{\circ}\right)$, as well as between $\mathrm{O}(6)-\mathrm{H}$ and $\mathrm{O}\left(3^{\prime}\right)$ of the same neighboring molecule $(d(\mathrm{O} \cdots \mathrm{O})=2.628(3)$, $d(\mathrm{H} \cdots \mathrm{O})=1.94(5) \AA, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle $\left.=160(6)^{\circ}\right)$, and between $\mathrm{N}(2)-\mathrm{H}$ and $\mathrm{O}\left(6^{\prime \prime}\right)$ of a third peptide molecule $\left(d(\mathrm{~N} \cdots \mathrm{O})=3.313(4), d(\mathrm{H} \cdots \mathrm{O})=2.53(3) \AA, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}\right.$ angle $\left.=153(3)^{\circ}\right) . \mathrm{MeOH}$ acts as an H -acceptor for $\mathrm{O}(5)-\mathrm{H}\left(d(\mathrm{O} \cdots \mathrm{O})=2.580(4), d(\mathrm{H} \cdots \mathrm{O})=1.66(4) \AA, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}\right.$ angle $\left.=169(4)^{\circ}\right)$ and as a donor to $\mathrm{O}(2)$ of a fourth peptide molecule $\left(d(\mathrm{O} \cdots \mathrm{O})=2.694(4), d(\mathrm{H} \cdots \mathrm{O})=1.96(5) \AA, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}\right.$ angle $\left.=162(5)^{\circ}\right)$.

Fig. 3. Packing diagram of compound 34, showing the hydrogen bonding

REFERENCES

[1] H. Heimgartner, in 'Amino Acids', Eds. G. Lubec and G. A. Rosenthal, Escom, Leiden, 1990, p. 29.
[2] H. Heimgartner, Angew. Chem. Int. Ed. 1991, 30, 238, and ref. cit. therein.
[3] W. Altherr, H. Heimgartner, in 'Peptides 1990', Eds. E. Giralt and D. Andreu, Escom, Leiden, 1991, p. 107; in 'Peptides 1992', Eds. C. H. Schneider and A. N. Eberle, Escom, Leiden, 1993, p. 387; W. Altherr, Dissertation, Universität Zürich, 1994.
[4] I. Dannecker-Dörig, H. Heimgartner, in 'Peptides 1990’, Eds. E. Giralt and D. Andreu, Escom, Leiden, 1991, p. 460; I. Dannecker-Dörig, Dissertation, Universität Zürich, 1995.
[5] J. M. Villalgordo, H. Heimgartner, Tetrahedron 1993, 49, 7215.
[6] C. B. Bucher, A. Linden, H. Heimgartner, Helv. Chim. Acta 1995, 78, 935; C. B. Bucher, H. Heimgartner, ibid. 1996, 79, 1903; C. B. Bucher, Dissertation, Universität Zürich, 1996.
[6] C. B. Bucher, A. Linden, H. Heimgartner, Helv. Chim. Acta 1995, 78, 935; C. B. Bucher, H. Heimgartner, ibid. 1996, 79, 1903; C. B. Bucher, Dissertation, Universität Zürich, 1996.
[7] R. Luykx, C. B. Bucher, H. Heimgartner, Helv. Chim. Acta 1996, 79, 527.
[8] J. M. Villalgordo, B. R. Vincent, H. Heimgartner, Helv. Chim. Acta 1990, 73, 959; J. M. Villalgordo, A. Linden, H. Heimgartner, ibid. 1992, 75, 2270; J. M. Villalgordo, Dissertation, Universität Zürich, 1992.
[9] F. Magirius, A. Linden, H. Heimgartner, Helv. Chim. Acta 1993, 76, 1980; ibid. 1995, 77, 453; F. Magirius, Dissertation, Universität Zürich, 1995.
[10] A. S. Orahovats, A. Linden, H. Heimgarnter, Helv. Chim. Acta 1992, 75, 2515 ; A. S. Orahovats, S. S. Bratovanov, A. Linden, H. Heimgartner, ibid. 1996, 79, 1121; T. R. Mihova, A. Linden, H. Heimgartner, ibid. 1996, 79, 2067.
[11] F. Arnhold, S. Chaloupka, A. Linden, H. Heimgartner, Helv. Chim. Acta 1995, 78, 899.
[12] M. Hugener, H. Heimgartner, Helv. Chim. Acta 1995, 78, 1490, 1823, 1863; M. Hugener, Dissertation, Universität Zürich, 1991.
[13] P. Wipf, H. Heimgartner, Helv. Chim. Acta 1988, 71, 140; P. Wipf, Dissertation, Universität Zürich, 1987.
[14] P. Wipf, H. Heimgartner, Helv. Chim. Acta 1990, 73, 13.
[15] D. Obrecht, H. Heimgartner, Helv. Chim. Acta 1983, 66, 1921; ibid. 1984, 67, 526; ibid. 1987, 70, 329; ibid. 1990, 73, 221.
[16] M. M. Shemyakin, V. K. Antonov, A. M. Shkrob, V. I. Shchelokov, Z. E. Agadzhanyan, Tetrahedron 1965, 21, 3537.
[17] M. Rothe, R. Theisohn, D. Mülhausen, F. Eisenbeiss, W. Schindler, in 'Chemistry and Biology of Peptides', Ed. J. Meienhofer, Ann Arbor Science, Michigan, 1972, p. 51.
[18] S. Cerini, E. Gavuzzo, G. Luisi, F. Pinnen, Int. J. Pept. Protein Res. 1993, 41, 282, and ref. cit. therein.
[19] L. Andreeva, T. M. Ivanova, E. S. Efremov, V. K. Antonov, M. M. Shemyakin, Zh. Obsch. Khim. 1970, 40, 475.
[20] S. Cerini, E. Gavuzzo, G. Lucente, G. Luisi, F. Pinnen, L. Radics, Int. J. Pept. Protein Res. 1991, $38,289$.
[21] A. Calcagni, M. Kajtar-Peredy, G. Lucente, G. Luisí, F. Pinnen, L. Radics, D. Rossi, Int. J. Pept. Protein Res. 1993, 42, 84.
[22] G. Zanotti, F. Pinnen, G. Lucente, S. Cerrini, E. Gavuzzo, F. Mazza, Int. J. Pept. Protein Res. 1983, 22, 410.
[23] F. Pinnen, A. D. Muro, G. Zanotti, G. Lucente, Int. J. Pept. Protein Res. 1987, 30, 388.
[24] S. Cerrini, E. Gavuzzo, G. Lucente, F. Pinnen, G. Zanotti, Int. J. Pept. Protein Res. 1989, 33, 6.
[25] M. Rothe, K. Reichert, M. Rosenbauer, in 'Peptides 1992', Eds. C. H. Schneider and A. N. Eberle, Escom, Leiden, 1993, p. 391.
[26] R. C. Sheppard, Experientia 1963, 19, 125; R. K. A. Giger, H. R. Loosli, M. D. Walkinshaw, B. J. Clark, J. M. Vigouret, ibid. 1987, 43, 1125.
[27] G. Zanotti, F. Pinnen, G. Lucente, S. Cerrini, E. Gavuzzo, J. Chem. Soc., Perkin Trans. I 1988, 2467; G. Zanotti, F. Pinnen, G. Lucente, S. Cerrini, W. Fedeli, F. Mazza, ibid. 1984, 1153.
[28] M. Schläpfer-Dähler, R. Prewo, J. H. Bieri, H. Heimgartner, Chimia 1988, 42, 25; M. Schläpfer-Dähler, H. Heimgartner, Helv. Chim. Acta 1993, 76, 2321.
[29] S. Cerrini, E. Gavuzzo, G. Lucente, F. Pinnen, Int. J. Pept. Protein Res. 1988, 31, 477.
[30] C. K. Johnson, 'ORTEP II. Report ORNL-5138', Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
[31] R. Kobayashi, Y. Sanejima, S. Nakajima, K. I. Kawai, S. Udagawa, Chem. Pharm. Bull. 1987, $36,1347$.
[32] G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467.
[33] a) E. N. Maslen, A. G. Fox, M. A. O'Keefe, in 'International Tables for Crystallography', Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, 1992, Vol. C, Table 6.1.1.1, p. 477; b) D. C. Creagh, W. J. McAuley, ibid. Table 4.2.6.8, p. 219.
[34] R. F. Stewart, E. R. Davidson, W. T. Simpson, J. Chem. Phys. 1965, 42, 3175.
[35] J. A. Ibers, W. C. Hamilton, Acta Crystallogr. 1964, 17, 781.
[36] 'TEXSAN. Single Crystal Structure Analysis Package, Version 5.0', Molecular Structure Corporation, The Woodlands, Texas, 1989.

[^0]: ${ }^{1}$) Part of the Ph.D. thesis of J.M.V., Universität Zürich, 1992.
 ${ }^{2}$) Present address: Universitat de Girona, Departament de Quimica, Unitat de Quimica Organica, Plaça del Hospital 6, E-17071 Girona.

[^1]: We thank the analytical units of our institute for spectra and analyses, especially Mr. H. Frohofer for elemental analyses and IR spectra, Mr. M. Vöhler, Dr. D. Nanz, and Mr. T. Plüss for NMR spectra, Mrs. Dr. A. Lorenzi-Riatsch for mass spectra, and Dr. A. Linden for the crystal-structure determinations. Financial support by the Swiss National Science Foundation, F. Hoffmann-La Roche AG, Basel, and the Prof. Dr. Hans E. SchmidStiftung is gratefully acknowledged.

[^2]: ${ }^{3}$) Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. CCDC-10/47. Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridgde CB2 1EZ, UK (fax: $+44(0) 1223336033$, or email: teched@chemcrys.cam.ac.uk).

